Beyond Sobolev and Besov : Regularity of Solutions of PDEs and Their Traces in Function Spaces (Lecture Notes in Mathematics)

個数:

Beyond Sobolev and Besov : Regularity of Solutions of PDEs and Their Traces in Function Spaces (Lecture Notes in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 330 p.
  • 商品コード 9783030751388

Full Description

This book investigates the close relation between quite sophisticated function spaces, the regularity of solutions of partial differential equations (PDEs) in these spaces and the link with the numerical solution of such PDEs. It consists of three parts. Part I, the introduction, provides a quick guide to function spaces and the general concepts needed. Part II is the heart of the monograph and deals with the regularity of solutions in Besov and fractional Sobolev spaces. In particular, it studies regularity estimates of PDEs of elliptic, parabolic and hyperbolic type on non smooth domains. Linear as well as nonlinear equations are considered and special attention is paid to PDEs of parabolic type. For the classes of PDEs investigated a justification is given for the use of adaptive numerical schemes.  Finally, the last part has a slightly different focus and is concerned with traces in several function spaces such as Besov- and Triebel-Lizorkin spaces, but also in quite general smoothness Morrey spaces.

 The book is aimed at researchers and graduate students working in regularity theory of PDEs and function spaces, who are looking for a comprehensive treatment of the above listed topics.

Contents

- Introduction. - Function Spaces and General Concepts. - Part I Besov and Fractional Sobolev Regularity of PDEs. - Theory and Background Material for PDEs. - Regularity Theory for Elliptic PDEs. - Regularity Theory for Parabolic PDEs. - Regularity Theory for Hyperbolic PDEs. - Applications to Adaptive Approximation Schemes. - Part II Traces in Function Spaces. - Traces on Lipschitz Domains. - Traces of Generalized Smoothness Morrey Spaces on Domains. - Traces on Riemannian Manifolds.

最近チェックした商品