Statistical Analysis of Microbiome Data (Frontiers in Probability and the Statistical Sciences)

個数:

Statistical Analysis of Microbiome Data (Frontiers in Probability and the Statistical Sciences)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 346 p.
  • 商品コード 9783030733506

Full Description

Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data.

This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.

Contents

1. Tree-guided regression and multivariate analysis of microbiome data - Hongu Zhao and Tao Wang.- 2. Computational methods for metagenomic assemblies and strain identification - Hongzhe Li.- 3. Graphical models for microbiome data - Ali Shojaie.- 4. Bayesian models for understanding the modulating factors of microbiome data - Francesco Denti, Matthew D. Koslovsky, Michele Guindani, Marina Vannucci, and Katrine L. Whiteson.- 5. Use of variable importance in microbiome studies - Hemant Ishwaran.- 6. Log-linear models for microbiome data - Glen Satten.- 7. Quantification of amplicon sequences in microbiome samples using statistical methods - Karin Dorman.- 8. TBD - Jeanine Houwing Duistermaat.- 9. Analyzing microbiome data by employing the power of abundance ratios - Zhigang Li.- 10. Beta diversity analysis - Michael Wu.- 11. MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and disease associations - Fengzhu Sun.- 12. Statistical methods for feature selection in microbiome studies - Peng Liu.- 13. A Bayesian restoration of the duality between principal components of a distance matrix and operational taxonomic units in microbiome analyses - Somnath Datta and Subharup Guha.

最近チェックした商品