エンジニアのための機械学習(テキスト)<br>Machine Learning for Engineers : Using data to solve problems for physical systems

個数:
  • ポイントキャンペーン

エンジニアのための機械学習(テキスト)
Machine Learning for Engineers : Using data to solve problems for physical systems

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 247 p.
  • 商品コード 9783030703875

Full Description

All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally "analog" disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers' ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow,  demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.

Contents

Part I Fundamentals.- 1. Introduction.- 2. The landscape of machine learning.- 3. Linear models.- 4. Tree-based models.- 5. Clustering data.- Part II Deep Neural Networks.- 6. Feed-forward Neural networks.- 7.convolutional neural networks.- 8. Recurrent neural networks for time series data.- Part III Advanced topics in machine learning.- 9. Unsupervised learning with neural networks.- 10. Reinforcement learning.- 11. Transfer learning.- Part IV Appendixes.- Appendix A. Sci-Kit learn.- Appendix B. Tensorflow.

最近チェックした商品