学習アナリティクス入門ガイド<br>A Beginner's Guide to Learning Analytics (Advances in Analytics for Learning and Teaching)

個数:

学習アナリティクス入門ガイド
A Beginner's Guide to Learning Analytics (Advances in Analytics for Learning and Teaching)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 326 p.
  • 商品コード 9783030702571

Full Description

This book A Beginner's Guide to Learning Analytics is designed to meet modern educational trends' needs. It is addressed to readers who have no prior knowledge of learning analytics and functions as an introductory text to learning analytics for those who want to do more with evaluation/assessment in their organizations. The book is useful to all who need to evaluate their learning and teaching strategies. It aims to bring greater efficiency and deeper engagement to individual students, learning communities, and educators.

Covered here are the key concepts linked to learning analytics for researchers and practitioners interested in learning analytics. This book helps those who want to apply analytics to learning and development programs and helps educational institutions to identify learners who require support and provide a more personalized learning experience. Like chapters show diverse uses of learning analytics to enhance student and faculty performance. It presents a coherent framework for the effective translation of learning analytics research for educational practice to its practical application in different educational domains. This book provides educators and researchers with the tools and frameworks to effectively make sense of and use data and analytics in their everyday practice. This book will be a valuable addition to researchers' bookshelves.

Contents

Chapter 1.- Introduction to Learning Analytics.- 1.1. Introduction to Learning Analytics.- 1.2. Learning analytics: A new and rapidly developing field.- 1.3. Benefits and Challenges of learning analytics.- 1.4. Ethical Concerns with Learning Analytics.- 1.5. Use of Learning analytics.- 1.6. Conclusion.- 1.7. Review Questions.- Chapter 2 Educational Data Mining & Learning Analytics.- 2.1. Introduction.- 2.2. Educational Data Mining (EDM).- 2.3. Educational Data Mining & Learning analytics.- 2.4. Educational Data Mining & Learning analytics Applications.-  2.5. Conclusion.- 2.6. Review Questions.- Chapter 3.-Preparing for Learning Analytics.- 3.1. Introduction.- 3.2. Role of Psychology in Learning analytics.- 3.3. Architecting the learning analytics environment.- 3.4. Major Barriers for adopting Learning Analytics.-3.5. Case Studies.- 3.6. Conclusion.- 3.7. Review Questions.- Chapter 4. Data requirements for Learning analytics.- 4.1. Introduction.- 4.2. Types of data used for Learning Analytics.- 4.3. Data Models used to represent usage data for Learning analytics.- 4.4. Data Privacy maintenance in Learning analytics.- 4.5. Case Studies.- 4.6. Conclusion.- 4.7. Review Questions.- Chapter 5. Tools for Learning Analytics.-  5.1. Introduction.- 5.2. Popular Learning Analytics Tools.- 5.3. Choosing a Tool.- 5.4. Strategies to Successfully Deploy a Tool.- 5.5. Exploring Learning Analytics Tools.- 5.6. Case Studies.- 5.7. Developing a Learning analytics Tool.- 5.8. Conclusion.- 5.9. Review Questions.-Chapter 6.- Other Technology Approaches to Learning Analytics.- 6.1. Introduction.- 6.2. Big Data & Learning Analytics.- 6.3. Data Science & Learning Analytics.- 6.4. AI & Learning Analytics.- 6.5. Machine Learning & Learning Analytics.- 6.6. Deep Learning & Learning Analytics.- 6.7. Case Studies.- 6.8. Conclusion.- 6.9. Review Questions.- Chapter 7.- Learning Analytics in Massive Open Online Courses.- 7.1 Introduction to MOOCs.- 7.2. From MOOCs to Learning analytics.- 7.3. Integrating Learning analytics with MOOCs.- 7.4. Benefits of applying Learning Analytics in MOOCs.- 7.5. Major Concerns of implementing Learning Analytics in MOOCs.- 7.6. Limitation of Applying Learning Analytics in MOOCs.- 7.7. Tools that support Leaning analytics in MOOCs.- 7.8. Case Studies.- 7.9. Conclusion.- 7.10. Review Questions.- Chapter 8.- The Pedagogical perspective of Learning Analytics.- 8.1. Introduction to Pedagogy.- 8.2. Learning Analytics based Pedagogical Framework.- 8.3. Pedagogical Interventions.- 8.4. Learning Analytics based Pedagogical Models.- 8.5. Case studies.- 8.6. Conclusion.- 8.7. Review Questions.- Chapter 9. Moving Forward.- 9.1. Self-Learning and Learning analytics.- 9.2. Lifelong learning and learning analytics.- 9.3. Present and future trend of learning analytics in the world.- 9.4. Measuring 21st Century Skills using Learning analytics.-  9.5. Moving Forward.- 9.6. Smart Learning analytics.- 9.7. Case Studies.- 9.8. Conclusion.- 9.9. Review Questions.-Chapter 10.- Case Studies.- 10.1. Recommender systems using learning analytics.- 10.2. Learning Analytics in Higher Education.- 10.3. Other Evidences on the use of Learning Analytics.- Chapter 11. Problems.

最近チェックした商品