Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems : Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPS) (Advances in Science, Technology & Innovation)

個数:

Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems : Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPS) (Advances in Science, Technology & Innovation)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 215 p.
  • 商品コード 9783030669584

Full Description

This book presents a collection of cross-disciplinary research, with contributions addressing all key features of the plant/microbe/ENP nexus in agro-ecosystems. The uptake, transport and transformation of nanoparticles in plants have attracted more and more attention in the past several years. Especially, the impact of Engineered Nanoparticles (ENPs) on bioprocesses; low-, medium- and high-level dose responses in the microbial community of soil; and long-, medium- and short-term exposure responses, particularly microbial nitrogen transformations, are just a few of the aspects involved. Since ENPs are used in many industries, including cosmetics, agriculture, medicine, food technology and waste management, their transport through biogeochemical cycles is an important focus of many studies today.
Specifically, ENP-microbe interaction has been analysed with regard to disease treatment for plants; it plays a vital role in disease inhibition by releasing metalions that act through many pathways - e.g. reactive oxygen species (ROS) generation, DNA transformation and disruption of the cell cycle - to stop cell growth in the pathogen. Due to these properties, ENPs are also used as slow release or delayed release pesticides and fungicides, and as carrier systems for growth-promoting hormones. Despite their multiple uses in various industries, the negative effects of ENPs are still a major concern for the scientific community and consumers alike. For example, their transport to various food chains has been reported to have adverse effects. This raises a degree of doubt concerning a rapidly growing scientific field with major applications in many industries.
From a sustainable development perspective and particularly to ensure food security in light of the uncertainty accompanying climate change, it is imperative to address this divergence by focusing on the plant/microbe/ENP nexus.

Contents

Engieered Nanoparticles (ENPs) in Agricultural Revolution: An Enticing Domain to Move Carefully.- Nanotechnology: Advancement for Agricultural Sustainability.- Nanotechnology for sustainable crop production: recent development and strategies.- Interaction of Titanium dioxide nanoparticles with Plants in Agroecosystems.- Interaction of nano-TiO2 with plants: Preparation and translocation.- Plant physiological responses to engineered nanoparticles.- Engineered nanoparticles in agro-ecosystems: implications on the soil health.- Effect of engineered nanoparticles on soil attributes and potential in reclamation of degraded lands.- Advances of Engineered Nanofertilizers for Modern Agriculture.- Nano-fertilizers and Nano-pesticides as Promoters of Plant Growth in Agriculture.- Bio-nanosensors: Synthesis and their substantial role in agriculture.

最近チェックした商品