Steps into Analytic Number Theory : A Problem-Based Introduction (Problem Books in Mathematics) (2021)

個数:

Steps into Analytic Number Theory : A Problem-Based Introduction (Problem Books in Mathematics) (2021)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 197 p.
  • 言語 ENG
  • 商品コード 9783030650797
  • DDC分類 512.7

Full Description

This problem book gathers together 15 problem sets on analytic number theory that can be profitably approached by anyone from advanced high school students to those pursuing graduate studies. It emerged from a 5-week course taught by the first author as part of the 2019 Ross/Asia Mathematics Program held from July 7 to August 9 in Zhenjiang, China.

While it is recommended that the reader has a solid background in mathematical problem solving (as from training for mathematical contests), no possession of advanced subject-matter knowledge is assumed. Most of the solutions require nothing more than elementary number theory and a good grasp of calculus. Problems touch at key topics like the value-distribution of arithmetic functions, the distribution of prime numbers, the distribution of squares and nonsquares modulo a prime number, Dirichlet's theorem on primes in arithmetic progressions, and more.

This book is suitable for any student with a special interest indeveloping problem-solving skills in analytic number theory. It will be an invaluable aid to lecturers and students as a supplementary text for introductory Analytic Number Theory courses at both the undergraduate and graduate level.

Contents

Preface.- Set #0.- Set #1.- Set #2.- Set #3.- Set #4.- Set #5.- Set #6.- Set #7.- Set #8.- Set #9.- Set #10.- Set #11.- Special Set A: Dirichlet's Theorem for m = 8.- Special Set B: Dirichlet's Theorem for m = l (odd prime).- Special Set C: Dirichlet's Theorem in the General Case.- Solutions to Set #0.- Solutions to Set #1.- Solutions to Set #2.- Solutions to Set #3.- Solutions to Set #4.- Solutions to Set #5.- Solutions to Set #6.- Solutions to Set #7.- Solutions to Set #8.- Solutions to Set #9.- Solutions to Set #10.- Solutions to Set #11.- Solutions to Special Set A.- Solutions to Special Set B.- Solutions to Special Set C.- Epilogue.- Suggestions for Further Reading.

最近チェックした商品