Distributed Artificial Intelligence : Second International Conference, DAI 2020, Nanjing, China, October 24-27, 2020, Proceedings (Lecture Notes in Computer Science)

個数:

Distributed Artificial Intelligence : Second International Conference, DAI 2020, Nanjing, China, October 24-27, 2020, Proceedings (Lecture Notes in Computer Science)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 141 p.
  • 言語 ENG
  • 商品コード 9783030640958

Full Description

This book constitutes the refereed proceedings of the Second International Conference on Distributed Artificial Intelligence, DAI 2020, held in Nanjing, China, in October 2020.

The 9 full papers presented in this book were carefully reviewed and selected from 22 submissions. DAI aims at bringing together international researchers and practitioners in related areas including general AI, multiagent systems, distributed learning, computational game theory, etc., to provide a single, high-profile, internationally renowned forum for research in the theory and practice of distributed AI.

Due to the Corona pandemic this event was held virtually.

Contents

Parallel Algorithm for Nash Equilibrium in Multiplayer Stochastic Games with Application to Naval Strategic Planning.- LAC-Nav: Collision-Free Multiagent Navigation Based on The Local ActionCells.- MGHRL: Meta Goal-generation for Hierarchical Reinforcement Learning.- D3PG: Decomposed Deep Deterministic Policy Gradient for Continuous Control.- Lyapunov-Based Reinforcement Learning for Decentralized Multi-Agent Control.- Hybrid Independent Learning in Cooperative Markov Games.- Efficient Exploration By Novelty-Pursuit.- Context-aware Multi-Agent Coordination with Loose Couplings and Repeated Interaction.- Battery Management for Automated Warehouses via Deep Reinforcement Learning.

最近チェックした商品