Stabilization of Distributed Parameter Systems: Design Methods and Applications (Iciam 2019 Sema Simai Springer Series)

個数:

Stabilization of Distributed Parameter Systems: Design Methods and Applications (Iciam 2019 Sema Simai Springer Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 135 p.
  • 商品コード 9783030617448

Full Description

This book presents recent results and envisages new solutions of the stabilization problem for infinite-dimensional control systems. Its content is based on the extended versions of presentations at the Thematic Minisymposium "Stabilization of Distributed Parameter Systems: Design Methods and Applications" at ICIAM 2019, held in Valencia from 15 to 19 July 2019. This volume aims at bringing together contributions on stabilizing control design for different classes of dynamical systems described by partial differential equations, functional-differential equations, delay equations, and dynamical systems in abstract spaces. This includes new results in the theory of nonlinear semigroups, port-Hamiltonian systems, turnpike phenomenon, and further developments of Lyapunov's direct method. The scope of the book also covers applications of these methods to mathematical models in continuum mechanics and chemical engineering. It is addressed to readers interested in control theory,differential equations, and dynamical systems.

Contents

1. Barkhayev, P. et al, Conditions of Exact Null Controllability and the Problem of Complete Stabilizability for Time-Delay Systems.- 2. Gugat, M. et al., The finite-time turnpike phenomenon for optimal control problems: Stabilization by non-smooth tracking terms.- 3. Kalosha, J. et al., On the eigenvalue distribution for a beam with attached masses.- 4. Macchelli, A. et al., Control design for linear port-Hamiltonian boundary control   systems. An overview. - 5. Otto, E. et al., Nonlinear Control of Continuous Fluidized Bed Spray Agglomeration Processes. - 6. Sklyar, G. et al., On polynomial stability of certain class of C_0 semigroups.- 7. Woźniak, J. et al., Existence of optimal stability margin for weakly damped beams.- 8. Zuyev, A. et al., Stabilization of crystallization models governed by hyperbolic systems.

最近チェックした商品