Reassessing Riemann's Paper : On the Number of Primes Less than a Given Magnitude (Springerbriefs in History of Science and Technology) (2ND)

個数:

Reassessing Riemann's Paper : On the Number of Primes Less than a Given Magnitude (Springerbriefs in History of Science and Technology) (2ND)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 107 p.
  • 言語 ENG
  • 商品コード 9783030610487

Full Description

In this book, the author pays tribute to Bernhard Riemann (1826-1866), a mathematician with revolutionary ideas, whose work on the theory of integration, the Fourier transform, the hypergeometric differential equation, etc. contributed immensely to mathematical physics. The text concentrates in particular on Riemann's only work on prime numbers, including ideas - new at the time - such as analytical continuation into the complex plane and the product formula for entire functions. A detailed analysis of the zeros of the Riemann zeta-function is presented. The impact of Riemann's ideas on regularizing infinite values in field theory is also emphasized.

This revised and enhanced new edition contains three new chapters, two on the application of Riemann's zeta-function regularization to obtain the partition function of a Bose (Fermi) oscillator and one on the zeta-function regularization in quantum electrodynamics. Appendix A2 has been re-written to make the calculations more transparent. A summary of Euler-Riemann formulae completes the book.

Contents

Preface.- Towards Euler's Product Formula and Riemann's Extension of the Zeta Function.- Prime Power Number Counting Function.- Riemann as an Expert in Fourier Transforms.- On the Way to Riemann's Entire Function ζ(s).- The Product Representation of ξ(s) and ζ(s) by Riemann (1859).- Derivation of Von Mangoldt's Formula for ψ(x).- The Number of Roots in the Critical Strip.- Riemann's Zeta Function Regularization.-  ζ-Function Regularization of the Partition Function of the Harmonic Oscillator.- ζ-Function Regularization of the Partition Function of the Fermi Oscillator.- The Zeta-Function in Quantum Electrodynamics (QED).- Summary of Euler-Riemann Formulae.- Appendix.

最近チェックした商品