Heuristics for Optimization and Learning (Studies in Computational Intelligence)

個数:

Heuristics for Optimization and Learning (Studies in Computational Intelligence)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 442 p.
  • 商品コード 9783030589325

Full Description

This book is a new contribution aiming to give some last research findings in the field of optimization and computing. This work is in the same field target than our two previous books published: "Recent Developments in Metaheuristics" and "Metaheuristics for Production Systems", books in Springer Series in Operations Research/Computer Science Interfaces.

The challenge with this work is to gather the main contribution in three fields, optimization technique for production decision, general development for optimization and computing method and wider spread applications. 

The number of researches dealing with decision maker tool and optimization method grows very quickly these last years and in a large number of fields. We may be able to read nice and worthy works from research developed in chemical, mechanical, computing, automotive and many other fields.

Contents

Process Plan Generation for Reconfigurable Manufacturing Systems: Exact vs Evolutionary-Based Multi-Objective Approaches.- On VNS-GRASP and Iterated Greedy Metaheuristics for Solving Hybrid Flow Shop Scheduling Problem with Uniform Parallel Machines and Sequence Independent Setup Time.- A Variable Block Insertion Heuristic for the Energy-Efficient Permutation Flowshop Scheduling with Makespan Criterion.- Solving 0-1 Bi-Objective Multi-Dimensional Knapsack Problems using Binary Genetic Algorithm.- An asynchronous parallel evolutionary algorithm for solving large .instances of the multi-objective QAP.- Learning from Prior Designs for Facility Layout Optimization.- Single-objective Real-parameter Optimization: Enhanced LSHADE-SPACMA Algorithm.- Operations Research at Bulk Terminal: A Parallel Column Generation Approach.- Heuristic solutions for the (α,β)-k feature set problem.- Generic Support for Precomputation-Based Global Routing Constraints in Local Search Optimization.- Dynamic Simulated Annealing with Adaptive Neighborhood using Hidden Markov Model.- Hybridization of the differential evolution algorithm for continuous multi-objective optimization.- A Steganographic Embedding Scheme Using Improved-PSO Approach.- Algorithms towards the Automated Customer Inquiry Classification.-  An heuristic scheme for a reaction advection diffusion equation.- Stock Market Speculation System Development based on Technico Temporal indicators and Data Mining Tools.- A New Hidden Markov Model Approach for Pheromone Level Exponent Adaptation in Ant Colony System.- A new cut-based genetic algorithm for graph partitioning applied to cell formation.-  Memetic algorithm and evolutionary operators for multi-objective matrix tri-factorization problem.- Quaternion simulated annealing.- A Cooperative Multi-Swarm Particle Swarm Optimizer Based Hidden Markov Model.- Experimental Sensitivity Analysis of Grid-Based Parameter Adaptation Method.-  Auto-Scaling System in Apache Spark Cluster using Model-Based Deep Reinforcement Learning.- Innovation Networks from Inter-Organizational Research Collaborations.- Assessing Film Coefficients of Microchannel Heat Sinks via Cuckoo Search Algorithm.- One-Class Subject Authentication using Feature Extraction by Grammatical Evolution on Accelerometer Data.- Semantic composition of word-embeddings with genetic programming.- New Approach for Continuous and Discrete Optimization: Optimization by Morphological Filters.

最近チェックした商品