ベイズ法要覧<br>Bayesian Compendium (2021. xiv, 204 S. XIV, 204 p. 60 illus., 23 illus. in color. 235 mm)

個数:

ベイズ法要覧
Bayesian Compendium (2021. xiv, 204 S. XIV, 204 p. 60 illus., 23 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 204 p.
  • 言語 ENG
  • 商品コード 9783030558994

Full Description

This book describes how Bayesian methods work. Its primary aim is to demystify them, and to show readers: Bayesian thinking isn't difficult and can be used in virtually every kind of research. In addition to revealing the underlying simplicity of statistical methods, the book explains how to parameterise and compare models while accounting for uncertainties in data, model parameters and model structures.

How exactly should data be used in modelling? The literature offers a bewildering variety of techniques and approaches (Bayesian calibration, data assimilation, Kalman filtering, model-data fusion, etc). This book provides a short and easy guide to all of these and more. It was written from a unifying Bayesian perspective, which reveals how the multitude of techniques and approaches are in fact all related to one another. Basic notions from probability theory are introduced. Executable code examples are included to enhance the book's practical use for scientific modellers, and all code is available online as well.

Contents

Preface.- 1 Introduction to Bayesian thinking.- 2 Introduction to Bayesian science.- 3 Assigning a prior distribution.- 4 Assigning a likelihood function.- 5 Deriving the posterior distribution.- 6 Sampling from any distribution by MCMC.- 7 Sampling from the posterior distribution by MCMC.- 8 Twelve ways to fit a straight line.- 9 MCMC and complex models.- 10 Bayesian calibration and MCMC: Frequently asked questions.- 11 After the calibration: Interpretation, reporting, visualization.- 2 Model ensembles: BMC and BMA.- 13 Discrepancy.- 14 Gaussian Processes and model emulation.- 15 Graphical Modelling (GM).- 16 Bayesian Hierarchical Modelling (BHM).- 17 Probabilistic risk analysis and Bayesian decision theory.- 18 Approximations to Bayes.- 19 Linear modelling: LM, GLM, GAM and mixed models.- 20 Machine learning.- 21 Time series and data assimilation.- 22 Spatial modelling and scaling error.- 23 Spatio-temporal modelling and adaptive sampling.- 24 What next?.- Appendix 1: Notation and abbreviations.- Appendix 2: Mathematics for modellers.- Appendix 3: Probability theory for modellers.- Appendix 4: R.- Appendix 5: Bayesian software.

最近チェックした商品