パンルヴェ・ハンドブック<br>The Painlevé Handbook (Mathematical Physics Studies) (2ND)

個数:

パンルヴェ・ハンドブック
The Painlevé Handbook (Mathematical Physics Studies) (2ND)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 389 p.
  • 言語 ENG
  • 商品コード 9783030533427

Full Description

This book, now in its second edition, introduces the singularity analysis of differential and difference equations via the Painlevé test and shows how Painlevé analysis provides a powerful algorithmic approach to building explicit solutions to nonlinear ordinary and partial differential equations. It is illustrated with integrable equations such as the nonlinear Schrödinger equation, the Korteweg-de Vries equation, Hénon-Heiles type Hamiltonians, and numerous physically relevant examples such as the Kuramoto-Sivashinsky equation, the Kolmogorov-Petrovski-Piskunov equation, and mainly the cubic and quintic Ginzburg-Landau equations.



Extensively revised, updated, and expanded, this new edition includes: recent insights from Nevanlinna theory and analysis on both the cubic and quintic Ginzburg-Landau equations; a close look at physical problems involving the sixth Painlevé function; and an overview of new results since the book's original publication with special focus on finite difference equations. The book features tutorials, appendices, and comprehensive references, and will appeal to graduate students and researchers in both mathematics and the physical sciences.

Contents

1. Introduction.- 2. Singularity analysis: Painlevé test.- 3. Integrating ordinary differential equations.- 4. Partial Differential Equations: Painlevé test.- 5. From the test to explicit solutions of PDEs.- 6. Integration of Hamiltonian Systems.- 7. Discrete nonlinear equations.- 8. FAQ (Frequently asked questions).- 9. Selected Problems Integrated by Painlevé functions. A. The classical results of Painlevé and followers. B. More on the Painlevé transcendents. C. Brief presentation of the elliptic functions. D. Basic introduction to the Nevanlinna theory. E. The bilinear formalism. F. Algorithm for computing the Laurent series. Index.

最近チェックした商品