Statistical Field Theory for Neural Networks (Lecture Notes in Physics 970) (1st ed. 2020. 2020. xvii, 203 S. 122 SW-Abb., 5 Farbabb. 235 mm)

個数:

Statistical Field Theory for Neural Networks (Lecture Notes in Physics 970) (1st ed. 2020. 2020. xvii, 203 S. 122 SW-Abb., 5 Farbabb. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783030464431

Full Description


This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.

Contents

I. IntroductionII. Probabilities, moments, cumulantsA. Probabilities, observables, and momentsB. Transformation of random variablesC. CumulantsD. Connection between moments and cumulantsIII. Gaussian distribution and Wick's theoremA. Gaussian distributionB. Moment and cumulant generating function of a GaussianC. Wick's theoremD. Graphical representation: Feynman diagramsE. Appendix: Self-adjoint operatorsF. Appendix: Normalization of a GaussianIV. Perturbation expansionA. General caseB. Special case of a Gaussian solvable theoryC. Example: Example: "phi^3 + phi^4" theoryD. External sourcesE. Cancellation of vacuum diagramsF. Equivalence of graphical rules for n-point correlation and n-th momentG. Example: "phi^3 + phi^4" theoryV. Linked cluster theoremA. General proof of the linked cluster theoremB. Dependence on j - external sources - two complimentary viewsC. Example: Connected diagrams of the "phi^3 + phi^4" theoryVI. Functional preliminariesA. Functional derivative1. Product rule2. Chain rule3. Special case of the chain rule: Fourier transformB. Functional Taylor seriesVII. Functional formulation of stochastic differential equationsA. Onsager-Machlup path integral*B. Martin-Siggia-Rose-De Dominicis-Janssen (MSRDJ) path integralC. Moment generating functionalD. Response function in the MSRDJ formalismVIII. Ornstein-Uhlenbeck process: The free Gaussian theoryA. DefinitionB. Propagators in time domainC. Propagators in Fourier domainIX. Perturbation theory for stochastic differential equationsA. Vanishing moments of response fieldsB. Vanishing response loopsC. Feynman rules for SDEs in time domain and frequency domainD. Diagrams with more than a single external legE. Appendix: Unitary Fourier transformX. Dynamic mean-field theory for random networksA. Definition of the model and generating functionalB. Property of self-averagingC. Average over the quenched disorderD. Stationary statistics: Self-consistent autocorrelation of as motion of a particle in a potentialE. Transition to chaosF. Assessing chaos by a pair of identical systemsG. Schroedinger equation for the maximum Lyapunov exponentH. Condition for transition to chaosXI. Vertex generating functionA. Motivating example for the expansion around a non-vanishing mean valueB. Legendre transform and definition of the vertex generating function GammaC. Perturbation expansion of GammaD. Generalized one-line irreducibilityE. ExampleF. Vertex functions in the Gaussian caseG. Example: Vertex functions of the "phi^3 + phi^4"-theoryH. Appendix: Explicit cancellation until second orderI. Appendix: Convexity of WJ. Appendix: Legendre transform of a GaussianXII. Application: TAP approximationInverse problemXIII. Expansion of cumulants into tree diagrams of vertex functionsA. Self-energy or mass operator SigmaXIV. Loopwise expansion of the effective action - Tree levelA. Counting the number of loopsB. Loopwise expansion of the effective action - Higher numbers of loopsC. Example: phi^3 + phi^4-theoryD. Appendix: Equivalence of loopwise expansion and infinite resummationE. Appendix: Interpretation of Gamma as effective actionF. Loopwise expansion of self-consistency equationXV. Loopwise expansion in the MSRDJ formalismA. Intuitive approachB. Loopwise corrections to the effective equation of motionC. Corrections to the self-energy and self-consistencyD. Self-energy correction to the full propagatorE. Self-consistent one-loopF. Appendix: Solution by Fokker-Planck equationXVI. NomenclatureAcknowledgmentsReferences