Fractional-in-Time Semilinear Parabolic Equations and Applications (Mathématiques et Applications)

個数:

Fractional-in-Time Semilinear Parabolic Equations and Applications (Mathématiques et Applications)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 184 p.
  • 商品コード 9783030450427

Full Description

This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra-Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics.

Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions.

This book is aimed at graduate students and researchers in mathematics, physics, mathematical engineering and mathematical biology, whose research involves partial differential equations. 

Contents

1. Introduction.-1.1 Historical remarks .-1.2 On overview of main results and applications .-1.3 Results on nonlocal reaction-diffusion systems 2. The functional framework.-2.1 The fractional-in-time linear Cauchy problem .-2.2 Ultracontractivity and resolvent families .-2.3 Examples of sectorial operators .-3 The semilinear parabolic problem.-3.1 Maximal mild solution theory .-3.2 Maximal strong solution theory .-3.3 Differentiability properties in the case 0 < a < .-3.4 Global a priori estimates .- 3.5 Limiting behavior as a ®1.- 3.6 Nonnegativity of mild solutions .-3.7 An application: the fractional Fisher-KPP equation .-4 Systems of fractional kinetic equations .-4.1 Nonlinear fractional reaction-diffusion .-4.2 The fractional Volterra-Lotka model .-4.3 A fractional nuclear reactor model .-5 Final remarks and open problems .-A Some supporting technical tools .-B Integration by parts formula for the regional fractional Laplacian .-C A zoo of fractional kinetic equations.-C.1Fractional equation with nonlocality in space.-C.2 Fractional equation with nonlocality in time.-C.3 Space-time fractional nonlocal equation.-References.-Index.

最近チェックした商品