Ergodic Theoretic Methods in Group Homology : A Minicourse on L2-Betti Numbers in Group Theory (Springerbriefs in Mathematics)

個数:

Ergodic Theoretic Methods in Group Homology : A Minicourse on L2-Betti Numbers in Group Theory (Springerbriefs in Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 114 p.
  • 商品コード 9783030442194

Full Description

This book offers a concise introduction to ergodic methods in group homology, with a particular focus on the computation of L2-Betti numbers.Group homology integrates group actions into homological structure. Coefficients based on probability measure preserving actions combine ergodic theory and homology. An example of such an interaction is provided by L2-Betti numbers: these invariants can be understood in terms of group homology with coefficients related to the group von Neumann algebra, via approximation by finite index subgroups, or via dynamical systems. In this way, L2-Betti numbers lead to orbit/measure equivalence invariants and measured group theory helps to compute L2-Betti numbers. Similar methods apply also to compute the rank gradient/cost of groups as well as the simplicial volume of manifolds.

This book introduces L2-Betti numbers of groups at an elementary level and thendevelops the ergodic point of view, emphasising the connection with approximation phenomena for homological gradient invariants of groups and spaces. The text is an extended version of the lecture notes for a minicourse at the MSRI summer graduate school "Random and arithmetic structures in topology" and thus accessible to the graduate or advanced undergraduate students. Many examples and exercises illustrate the material.

Contents

0 Introduction.- 1 The von Neumann dimension.- 2 L2-Betti numbers.- 3 The residually finite view: Approximation.- 4 The dynamical view: Measured group theory.- 5 Invariant random subgroups.- 6 Simplicial volume.- A Quick reference.- Bibliography.- Symbols.- Index.

最近チェックした商品