生医学・保健情報学のための深層学習技術<br>Deep Learning Techniques for Biomedical and Health Informatics (Studies in Big Data)

個数:
電子版価格
¥34,273
  • 電子版あり

生医学・保健情報学のための深層学習技術
Deep Learning Techniques for Biomedical and Health Informatics (Studies in Big Data)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 383 p.
  • 言語 ENG
  • 商品コード 9783030339654
  • DDC分類 006

Full Description

This book presents a collection of state-of-the-art approaches for deep-learning-based biomedical and health-related applications. The aim of healthcare informatics is to ensure high-quality, efficient health care, and better treatment and quality of life by efficiently analyzing abundant biomedical and healthcare data, including patient data and electronic health records (EHRs), as well as lifestyle problems. In the past, it was common to have a domain expert to develop a model for biomedical or health care applications; however, recent advances in the representation of learning algorithms (deep learning techniques) make it possible to automatically recognize the patterns and represent the given data for the development of such model.

This book allows new researchers and practitioners working in the field to quickly understand the best-performing methods. It also enables them to compare different approaches and carry forward their research in an important area that has a direct impact on improving the human life and health.

It is intended for researchers, academics, industry professionals, and those at technical institutes and R&D organizations, as well as students working in the fields of machine learning, deep learning, biomedical engineering, health informatics, and related fields.

 

Contents

MedNLU: Natural Language Understander for Medical Texts.- Deep Learning Based Biomedical Named Entity Recognition Systems.- Disambiguation Model for Bio-Medical Named Entity Recognition.- Applications of Deep Learning in Healthcare and Biomedicine.- Deep Learning for Clinical Decision Support Systems: A Review from the Panorama of Smart Healthcare.- Review of Machine Learning and Deep Learning based Recommender Systems for Health Informatics.- Deep Learning and Explainable AI in Healthcare using EHR.- Deep Learning for Analysis of Electronic Heath Records.- Bioinformatics Using Deep Architecture.- Intelligent, Secure Big Health Data Management using Deep Learning and Blockchain Technology: An Overview.- Malaria Disease Detection using CNN Technique with SGD, RMSprop and ADAM Optimizers.- Deep Reinforcement Learning based Personalized Health Recommendations.

最近チェックした商品