Unstable Systems (Mathematical Physics Studies)

個数:

Unstable Systems (Mathematical Physics Studies)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 221 p.
  • 言語 ENG
  • 商品コード 9783030315726

Full Description

This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are critically discussed. The quantum  mechanical Lax-Phillips theory developed by the authors, based on the dilation theory of Nagy and Foias and its more general extension to approximate semigroup evolution is explained.

The second part provides a description of approaches to classical stability analysis and introduces geometrical methods recently developed by the authors, which are shown to be highly effective in diagnosing instability and, in many cases, chaotic behavior. It is  then shown that, in the framework of  the theory of symplectic manifolds, there is a systematic algorithm for the construction of a canonical transformation of any standard potential model Hamiltonian to geometric form, making accessible powerful geometric methods for stability analysis in a wide range of applications.

Contents

Part I: Quantum Systems and Their Evolution.- Chapter 1: Gamow approach to the unstable quantum system. Wigner-Weisskopf formulation. Analyticity and the propagator. Approximate exponential decay. Rotation of Spectrum to define states. Difficulties in the case of two or more final states.- Chapter 2: Rigged Hilbert spaces (Gel'fand Triples). Work of Bohm and Gadella. Work of Sigal and Horwitz, Baumgartel. Advantages and problems of the method.- Chapter 3: Ideas of Nagy and Foias, invariant subspaces. Lax-Phillips Theory (exact semigroup). Generalization to quantum theory (unbounded spectrum). Stark effect.- Relativistic Lee-Friedrichs model.- Generalization to positive spectrum.- Relation to Brownian motion, wave function collapse.- Resonances of particles and fields with spin. Resonances of nonabelian gauge fields.- Resonances of the matter fields giving rise to the gauge fields. Resonence of the two dimensional lattice of graphene. Part II: Classical Systems.- Chapter 4: General dynamical systems and instability. Hamiltonian dynamical systems and instability. Geometrical ermbedding of Hamiltonian dynamical systems. Criterion for instability and chaos, geodesic deviation. 
Part III: Quantization.- Chapter 5: Second Quantization of geometric deviation. Dynamical instability. Dilation along a geodesic.- Part IV: Applications.- Chapter 6: Phonons. Resonances in semiconductors. Superconductivity (Cooper pairs). Properties of grapheme. Thermodynamic properties of chaotic  systems. Gravitational waves.

最近チェックした商品