Sampling Techniques for Supervised or Unsupervised Tasks (Unsupervised and Semi-supervised Learning) (2020)

個数:

Sampling Techniques for Supervised or Unsupervised Tasks (Unsupervised and Semi-supervised Learning) (2020)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 232 p.
  • 言語 ENG
  • 商品コード 9783030293512
  • DDC分類 006.3

Full Description

This book describes in detail sampling techniques that can be used for unsupervised and supervised cases, with a focus on sampling techniques for machine learning algorithms. It covers theory and models of sampling methods for managing scalability and the "curse of dimensionality", their implementations, evaluations, and applications. A large part of the book is dedicated to database comprising standard feature vectors, and a special section is reserved to the handling of more complex objects and dynamic scenarios. The book is ideal for anyone teaching or learning pattern recognition and interesting teaching or learning pattern recognition and is interested in the big data challenge. It provides an accessible introduction to the field and discusses the state of the art concerning sampling techniques for supervised and unsupervised task.

Provides a comprehensive description of sampling techniques for unsupervised and supervised tasks;
Describe implementationand evaluation of algorithms that simultaneously manage scalable problems and curse of dimensionality;
Addresses the role of sampling in dynamic scenarios, sampling when dealing with complex objects, and new challenges arising from big data.



"This book represents a timely collection of state-of-the art research of sampling techniques, suitable for anyone who wants to become more familiar with these helpful techniques for tackling the big data challenge."

M. Emre Celebi, Ph.D., Professor and Chair, Department of Computer Science, University of Central Arkansas

"In science the difficulty is not to have ideas, but it is to make them work"

From Carlo Rovelli

Contents

Introduction to sampling techniques.- Core-sets: an Updated Survey.- A family of unsupervised sampling algorithms.- From supervised instance and feature selection algorithms to dual selection: A Review.- Approximating Spectral Clustering via Sampling: A Review.- Sampling technique for complex data.- Boosting the Exploration of Huge Dynamic Graphs.

最近チェックした商品