Optimization in Large Scale Problems : Industry 4.0 and Society 5.0 Applications (Springer Optimization and Its Applications)

個数:

Optimization in Large Scale Problems : Industry 4.0 and Society 5.0 Applications (Springer Optimization and Its Applications)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 340 p.
  • 言語 ENG
  • 商品コード 9783030285678

Full Description

This volume provides resourceful thinking and insightful management solutions to the many challenges that decision makers face in their predictions, preparations, and implementations of the key elements that our societies and industries need to take as they move toward digitalization and smartness. The discussions within the book aim to uncover the sources of large-scale problems in socio-industrial dilemmas, and the theories that can support these challenges. How theories might also transition to real applications is another question that this book aims to uncover.  In answer to the viewpoints expressed by several practitioners and academicians, this book aims to provide both a learning platform which spotlights open questions with related case studies.

The relationship between Industry 4.0 and Society 5.0 provides the basis for the expert contributions in this book, highlighting the uses of analytical methods such as mathematical optimization, heuristic methods, decomposition methods, stochastic optimization, and more. The book will prove useful to researchers, students, and engineers in different domains who encounter large scale optimization problems and will encourage them to undertake research in this timely and practical field. The book splits into two parts. The first part covers a general perspective and challenges in a smart society and in industry. The second part covers several case studies and solutions from the operations research perspective for large scale challenges specific to various industry and society related phenomena.

Contents

Part 1.- Risk Based Optimization of Integrated Fabrication/Fulfillment Supply Chains (Nasim Nezamoddini, Faisal Aqlan, Amirhosein Gholami).- μθ-EGF: A New Multi-Thread Implementation Algorithm for the Packing Problem inspired by Electromagnetic Fields and Gravitational Effects (Felix Martinez-Rios and Jose Antonio Marmolejo-Saucedo).-  The Vector Optimization Method for Solving Integer Linear Programming Problems. Application for the Unit Commitment Problem in Electrical Power Production (Lenar Nizamov).- An Outer Approximation Algorithm for Capacitated Disassembly Scheduling Problem with Parts Commonality and Random Demand (Kanglin Liu, MengWang, Zhi-Hai Zhang),- Multi-Tree Decomposition Methods for Large-Scale Mixed Integer Nonlinear Optimization (Ivo Nowak, Pavlo Muts, and Eligius M.T. Hendrix).- An Embarrassingly Parallel Method for Large-Scale Stochastic Programs (Burhaneddin Sandıkçı and Osman Y. Özaltın).- Part 2.- How to Effectively Train Large Scale Machines  (Avan Samareh, Mahshid Salemi Parizi).- A Graph Search Algorithm for Solving Large Scale Median Problems on Real Road Networks (Saeed Ghanbartehrania, J. David Porterb, Mahnoush Samadi Dinania).- Solving Large Scale Optimization Problems in the Transportation Industry and Beyond through Column Generation (Yanqi Xu).-  Dynamic Energy Management (Nicholas Moehle, Enzo Busseti, Stephen Boyd, and Matt Wytock).- An Approximation-Based Approach for Chance-Constrained Vehicle Routing and Air Traffic Control Problems (Lijian Chen).- Algorithmic Mechanism Design for Collaboration in Large-scale Transportation Networks (Minghui Lai and Xiaoqiang Cai).- Kantorovich-Rubinstein Distance Minimization: Application to Location Problems (Viktor Kuzmenko, Stan Uryasev).

最近チェックした商品