混合モデルと応用<br>Mixture Models and Applications (Unsupervised and Semi-supervised Learning)

個数:
電子版価格
¥18,015
  • 電子版あり

混合モデルと応用
Mixture Models and Applications (Unsupervised and Semi-supervised Learning)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 355 p.
  • 商品コード 9783030238759

Full Description

This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature.

Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection;
Present theoretical and practical developments in mixture-based modeling and their importance in different applications;
Discusses perspectives and challenging future works related tomixture modeling.

Contents

A Gaussian Mixture Model Approach To Classifying Response Types.- Interactive Generation Of Calligraphic Trajectories From Gaussian Mixtures.- Mixture models for the analysis, edition, and synthesis of continuous time series.- Multivariate Bounded Asymmetric Gaussian Mixture Model.- Online Recognition Via A Finite Mixture Of Multivariate Generalized Gaussian Distributions.- L2 Normalized Data Clustering Through the Dirichlet Process Mixture Model of Von Mises Distributions with Localized Feature Selection.- Deriving Probabilistic SVM Kernels From Exponential Family Approximations to Multivariate Distributions for Count Data.- Toward an Efficient Computation of Log-likelihood Functions in Statistical Inference: Overdispersed Count Data Clustering.- A Frequentist Inference Method Based On Finite Bivariate And Multivariate Beta Mixture Models.- Finite Inverted Beta-Liouville Mixture Models with Variational Component Splitting.- Online Variational Learning for Medical Image Data Clustering.- Color Image Segmentation using Semi-Bounded Finite Mixture Models by Incorporating Mean Templates.- Medical Image Segmentation Based on Spatially Constrained Inverted Beta-Liouville Mixture Models.- Flexible Statistical Learning Model For Unsupervised Image Modeling And Segmentation.

最近チェックした商品