Cause Effect Pairs in Machine Learning (The Springer Series on Challenges in Machine Learning) (2019)

個数:

Cause Effect Pairs in Machine Learning (The Springer Series on Challenges in Machine Learning) (2019)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 372 p.
  • 言語 ENG
  • 商品コード 9783030218126

Full Description

This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ("Does altitude cause a change in atmospheric pressure, or vice versa?") is here cast as a binary classification problem, to be tackled by machine learning algorithms.  Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a "causal mechanism", in the sense that the values of one variable may have been generated from the values of the other.  
This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website.

Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.

Contents

1. The cause-effect problem: motivation, ideas, and popular misconceptions.- 2. Evaluation methods of cause-effect pairs.- 3. Learning Bivariate Functional Causal Models.- 4. Discriminant Learning Machines.- 5. Cause-Effect Pairs in Time Series with a Focus on Econometrics.- 6. Beyond cause-effect pairs.- 7. Results of the Cause-Effect Pair Challenge.- 8. Non-linear Causal Inference using Gaussianity Measures.- 9. From Dependency to Causality: A Machine Learning Approach.- 10. Pattern-based Causal Feature Extraction.- 11. Training Gradient Boosting Machines using Curve-fitting and Information-theoretic Features for Causal Direction Detection.- 12. Conditional distribution variability measures for causality detection.- 13. Feature importance in causal inference for numerical and categorical variables.- 14. Markov Blanket Ranking using Kernel-based Conditional Dependence Measures.

最近チェックした商品