High-Performance Simulation-Based Optimization (Studies in Computational Intelligence) (2020)

個数:

High-Performance Simulation-Based Optimization (Studies in Computational Intelligence) (2020)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 291 p.
  • 言語 ENG
  • 商品コード 9783030187668
  • DDC分類 519.6

Full Description

This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That's where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.   

Contents

Infill Criteria for Multiobjective Bayesian Optimization.- Many-Objective Optimization with Limited Computing Budget.- Multi-Objective Bayesian Optimization for Engineering Simulation.- Automatic Configuration of Multi-Objective Optimizers and Multi-Objective Configuration.- Optimization and Visualization in Many-Objective Space Trajectory Design.- Simulation Optimization through Regression or Kriging Metamodels.- Towards Better Integration of Surrogate Models and Optimizers.- Surrogate-Assisted Evolutionary Optimization of Large Problems.- Overview and Comparison of Gaussian Process-Based Surrogate Models for Mixed Continuous and Discrete Variables: Application on Aerospace Design Problems.- Open Issues in Surrogate-Assisted Optimization.- A Parallel Island Model for Hypervolume-Based Many-Objective Optimization.- Many-Core Branch-and-Bound for GPU Accelerators and MIC Coprocessors.

最近チェックした商品