Quantitative Stochastic Homogenization and Large-Scale Regularity (Grundlehren der mathematischen Wissenschaften)

個数:

Quantitative Stochastic Homogenization and Large-Scale Regularity (Grundlehren der mathematischen Wissenschaften)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 518 p.
  • 言語 ENG
  • 商品コード 9783030155476
  • DDC分類 515.353

Full Description

The focus of this book is the large-scale statistical behavior of solutions of divergence-form elliptic equations with random coefficients, which is closely related to the long-time asymptotics of reversible diffusions in random media and other basic models of statistical physics. Of particular interest is the quantification of the rate at which solutions converge to those of the limiting, homogenized equation in the regime of large scale separation, and the description of their fluctuations around this limit. This self-contained presentation gives a complete account of the essential ideas and fundamental results of this new theory of quantitative stochastic homogenization, including the latest research on the topic, and is supplemented with many new results. The book serves as an introduction to the subject for advanced graduate students and researchers working in partial differential equations, statistical physics, probability and related fields, as well as a comprehensive reference for experts in homogenization. Being the first text concerned primarily with stochastic (as opposed to periodic) homogenization and which focuses on quantitative results, its perspective and approach are entirely different from other books in the literature.

Contents

Preface.- Assumptions and examples.- Frequently asked questions.- Notation.- Introduction and qualitative theory.- Convergence of the subadditive quantities.- Regularity on large scales.- Quantitative description of first-order correctors.- Scaling limits of first-order correctors.- Quantitative two-scale expansions.- Calderon-Zygmund gradient L^p estimates.- Estimates for parabolic problems.- Decay of the parabolic semigroup.- Linear equations with nonsymmetric coefficients.- Nonlinear equations.- Appendices: A.The O_s notation.- B.Function spaces and elliptic equations on Lipschitz domains.- C.The Meyers L^{2+\delta} estimate.- D. Sobolev norms and heat flow.- Parabolic Green functions.- Bibliography.- Index.

最近チェックした商品