Embedded Deep Learning : Algorithms, Architectures and Circuits for Always-on Neural Network Processing

個数:

Embedded Deep Learning : Algorithms, Architectures and Circuits for Always-on Neural Network Processing

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 206 p.
  • 言語 ENG
  • 商品コード 9783030075774

Full Description

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.

Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;

Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy - applications, algorithms, hardware architectures, and circuits - supported by real silicon prototypes;

Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;

Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization's implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.

Contents

Chapter 1 Embedded Deep Neural Networks.- Chapter 2 Optimized Hierarchical Cascaded Processing.- Chapter 3 Hardware-Algorithm Co-optimizations.- Chapter 4 Circuit Techniques for Approximate Computing.- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing.- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing.- Chapter 7 Conclusions, contributions and future work.

最近チェックした商品