Data-Driven Prediction for Industrial Processes and Their Applications (Information Fusion and Data Science)

個数:

Data-Driven Prediction for Industrial Processes and Their Applications (Information Fusion and Data Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 443 p.
  • 言語 ENG
  • 商品コード 9783030067854
  • DDC分類 006.3

Full Description

This book presents modeling methods and algorithms for data-driven prediction and forecasting of practical industrial process by employing machine learning and statistics methodologies. Related case studies, especially on energy systems in the steel industry are also addressed and analyzed. The case studies in this volume are entirely rooted in both classical data-driven prediction problems and industrial practice requirements. Detailed figures and tables demonstrate the effectiveness and generalization of the methods addressed, and the classifications of the addressed prediction problems come from practical industrial demands, rather than from academic categories. As such, readers will learn the corresponding approaches for resolving their industrial technical problems. Although the contents of this book and its case studies come from the steel industry, these techniques can be also used for other process industries. This book appeals to students, researchers, and professionals withinthe machine learning and data analysis and mining communities.

Contents

Preface.- Introduction.- Why the prediction is required for industrial process.- Introduction to industrial process prediction.- Category of industrial process prediction.- Common-used techniques for industrial process prediction.- Brief summary.- Data preprocessing techniques.- Anomaly detection of data.- Correction of abnormal data.- Methods of packing missing data.- Data de-noising techniques.- Data fusion methods.- Discussion.- Industrial time series prediction.- Introduction.- Methods of phase space reconstruction.- Prediction modeling.- Benchmark prediction problems.- Cases of industrial applications.- Discussion.- Factor-based industrial process prediction.- Introduction.- Methods of determining factors.- Factor-based single-output model.- Factor-based multi-output model.- Cases of industrial applications.- Discussion.- Industrial Prediction intervals with data uncertainty.- Introduction.- Common-used techniques for prediction intervals.- Prediction intervals with noisy outputs.- Prediction intervals with noisy inputs and outputs.- Time series prediction intervals with missing input.- Industrial cases of prediction intervals.- Discussion.- Granular computing-based long term prediction intervals.- Introduction.- Basic theory of granular computing.- Techniques of granularity partition.- Long-term prediction model.- Granular-based prediction intervals.- Multi-dimension granular-based long term prediction intervals.- Discussion.- Parameters estimation and optimization.- Introduction.- Gradient-based methods.- Evolutionary algorithms.- Nonlinear Kalman-filter estimation.- Probabilistic methods.- Gamma-test based noise estimation.- Industrial applications.- Discussion.- Parallel computing considerations.- Introduction.- CUDA-based parallel acceleration.- Hadoop-based distributed computation.- Other techniques.- Industrial applications to parallel computing.- Discussion.- Prediction-based scheduling of industrial system.- Introduction.- Scheduling of blast furnace gas system.- Scheduling of coke oven gas system.- Scheduling of converter gas system.- Scheduling of oxygen system.- Predictive scheduling for plant-wide energy system.- Discussion.

最近チェックした商品