DES FLEURS POUR SCHRODINGER - LA RELATIVITE D'ECHELLE ET SES APPLICATIONS

個数:

DES FLEURS POUR SCHRODINGER - LA RELATIVITE D'ECHELLE ET SES APPLICATIONS

  • 海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常4~8週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9782729851828

基本説明

http://editions-ellipses.fr/PDF/9782729851828_Presse_BUP_ChalineNottale.pdf


 


 


 


Ce livre développe une nouvelle représentation du monde, la nouvelle théorie de la « relativité d'échelle », qui prend en compte par construction toutes les échelles de la nature. Le « principe de relativité d'échelle » postule que les lois fondamentales de la nature doivent être valides quel que soit « l'état d'échelle » du système de référence. Il complète ainsi le « principe de relativité » de Galilée, Poincaré et Einstein qui s'appliquait seulement aux états de position, d'orientation et de mouvement. Dans son cadre, la géométrie « courbe » de l'espace-temps de la relativité d'Einstein peut être généralisée à un espace-temps fractal. La loi fondamentale de la dynamique prend, dans une telle géométrie, une forme quantique, en particulier celle de l'équation de Schrödinger, qui peut être généralisée pour ne plus forcément dépendre de la constante microscopique de Planck, ce qui permet d'envisager l'existence d'effets quasi quantiques macroscopiques d'un type nouveau. Cette théorie a des applications potentielles multiples et certaines de ses prédictions ont été testées avec succès, en astrophysique (structures gravitationnelles, en particulier exoplanètes), en cosmologie (constante cosmologique), en physique (constante de couplage forte), en paléontologie (arbre de l'évolution) et en économie (chronologie évolutive des sociétés). En biologie enfin, elle permet une nouvelle approche de la question de l'auto-organisation et de la formation et l'évolution de structures.

最近チェックした商品