LE DICTIONNAIRE DE (PRESQUE) TOUS LES NOMBRES ENTIERS

個数:

LE DICTIONNAIRE DE (PRESQUE) TOUS LES NOMBRES ENTIERS

  • 海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常4~8週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9782340085039

基本説明

À quoi vous fait penser le nombre 13 ? Pour beaucoup c'est un nombre qui porte malheur... ou chance... Plus sérieusement, d'un point de vue mathématique, c'est un nombre premier. Mais savez-vous que c'est aussi un nombre de Fibonacci, un nombre de Fortune, que le carré de la somme de ses chiffres
est égal à la somme des chiffres de son carré, qu'il y a 13 solides d'Archimède dont le fameux icosaèdre tronqué : c'est la forme d'un ballon de football...
Qu'y a-t-il de commun entre 1 634 et 8 208, entre 28 et 496 ou entre 23 et 239 ? Les deux premiers sont égaux à la somme des puissances quatrièmes de leurs chiffres, 28 et 496 sont des nombres parfaits et les deux derniers ne peuvent pas s'écrire comme une somme de moins de neuf cubes.
Le lecteur découvrira les nombreuses propriétés des nombres, qu'elles soient liées à leur écriture dans le système décimal, comme pour 1 634 et 8 208, ou intrinsèques et indépendantes de leur écriture donc plus intéressantes : c'est le cas des deux autres exemples cités plus haut (28 et 496, 23 et 239). Il y rencontrera le système de numération employé par les Shadoks, les solides de Platon, les nombres sociables, les jumeaux magiques, les nombres vampires, le cercle d'Euler, les nombres heureux, abondants ou colossalement abondants, les nombres premiers jumeaux, cousins ou sexy... Toutes les notions introduites seront, bien sûr, expliquées dans de nombreux encadrés.
Au gré de cette promenade parmi les nombres entiers, on croisera aussi les mathématiciens les plus importants, toutes époques confondues : l'occasion de se rendre compte que l'histoire des mathématiques est avant tout une grande aventure humaine.

最近チェックした商品