The Handbook of Multimodal-Multisensor Interfaces, Volume 2 : Signal Processing, Architectures, and Detection of Emotion and Cognition

個数:

The Handbook of Multimodal-Multisensor Interfaces, Volume 2 : Signal Processing, Architectures, and Detection of Emotion and Cognition

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 555 p.
  • 言語 ENG
  • 商品コード 9781970001716

Full Description

The Handbook of Multimodal-Multisensor Interfaces provides the first authoritative resource on what has become the dominant paradigm for new computer interfaces: user input involving new media (speech, multi-touch, hand and body gestures, facial expressions, writing) embedded in multimodal-multisensor interfaces that often include biosignals. This edited collection is written by international experts and pioneers in the field. It provides a textbook, reference, and technology roadmap for professionals working in this and related areas. This second volume of the handbook begins with multimodal signal processing, architectures, and machine learning. It includes recent deep learning approaches for processing multisensorial and multimodal user data and interaction, as well as context-sensitivity. A further highlight is processing of information about users' states and traits, an exciting emerging capability in next-generation user interfaces. These chapters discuss real-time multimodal analysis of emotion and social signals from various modalities, and perception of affective expression by users. Further chapters discuss multimodal processing of cognitive state using behavioral and physiological signals to detect cognitive load, domain expertise, deception, and depression. This collection of chapters provides walk-through examples of system design and processing, information on tools and practical resources for developing and evaluating new systems, and terminology and tutorial support for mastering this rapidly expanding field. In the final section of this volume, experts exchange views on the timely and controversial challenge topic of multimodal deep learning. The discussion focuses on how multimodal-multisensor interfaces are most likely to advance human performance during the next decade.

Contents

1. Multimodal Machine Learning
2. Classifying Multimodal Data
3. Learning for Multimodal and Context-sensitive Interfaces
4. Deep Learning for Multisensorial and Multimodal Interaction
5. Multimodal User State and Trait Recognition
6. Multimodal-Multisensor Affect Detection
7. Multimodal Analysis of Social Signals
8. Real-time Sensing of Affect and Social Signals in a Multimodal Framwork
9. How do Users Perceive Multimodal Expressions of Affects?
10. Multimodal Behavior and Physiological Signals as Indicators of Cognitive Load
11. Multimodal Learning Analytics
12. Multimodal Assessment of Depression and Related Disorders Based on Behavioral Signals
13. Multimodal Deception Detection
14. Perspectives on Strategic Fusion
15. Perspectives on Predictive Power of Multimodal Deep Learning

最近チェックした商品