Performance Analysis of Linear Codes under Maximum-Likelihood Decoding : A Tutorial (Foundations and Trends® in Communications and Information Theory)

個数:

Performance Analysis of Linear Codes under Maximum-Likelihood Decoding : A Tutorial (Foundations and Trends® in Communications and Information Theory)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 236 p.
  • 言語 ENG
  • 商品コード 9781933019321
  • DDC分類 621.3822

Full Description

This book focuses on the performance evaluation of linear codes under optimal maximum-likelihood (ML) decoding. Though the ML decoding algorithm is prohibitively complex for most practical codes, their performance analysis under ML decoding allows to predict their performance without resorting to computer simulations. It also provides a benchmark for testing the sub-optimality of iterative (or other practical) decoding algorithms.

This analysis also establishes the goodness of linear codes (or ensembles), determined by the gap between their achievable rates under optimal ML decoding and information theoretical limits. In this book, upper and lower bounds on the error probability of linear codes under ML decoding are surveyed and applied to codes and ensembles of codes on graphs. For upper bounds, the authors discuss various bounds where focus is put on Gallager bounding techniques and their relation to a variety of other reported bounds. Within the class of lower bounds, they address de Caen's based bounds and their improvements, and also consider sphere-packing bounds with their recent improvements targeting codes of moderate block lengths.

Performance Analysis of Linear Codes under Maximum-Likelihood Decoding is a comprehensive introduction to this important topic for students, practitioners and researchers working in communications and information theory.

Contents

1 A Short Overview 2 Union Bounds: How Tight Can They Be? 3 Improved Upper Bounds for Gaussian and Fading Channels 4 Gallager-Type Upper Bounds: Variations, Connections and Applications 5 Sphere-Packing Bounds on the Decoding Error Probability: Classical and Recent Results 6 Lower Bounds Based on de Caen's Inequality and Recent Improvements 7 Concluding Remarks

最近チェックした商品