Real Analyis (Springer Undergraduate Mathematics Series) (1st ed. 2001. Corr. 3rd printing 2006.)

個数:

Real Analyis (Springer Undergraduate Mathematics Series) (1st ed. 2001. Corr. 3rd printing 2006.)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 276 p./サイズ 35 illus.
  • 商品コード 9781852333140

基本説明

Offers a fresh approach to a core subject and includes worked examples and exercises designed to reinforce the underlying concepts.

Full Description

From the point of view of strict logic, a rigorous course on real analysis should precede a course on calculus. Strict logic, is, however, overruled by both history and practicality. Historically, calculus, with its origins in the 17th century, came first, and made rapid progress on the basis of informal intuition. Not until well through the 19th century was it possible to claim that the edifice was constructed on sound logical foundations. As for practicality, every university teacher knows that students are not ready for even a semi-rigorous course on analysis until they have acquired the intuitions and the sheer technical skills that come from a traditional calculus course. 1 Real analysis, I have always thought, is the pons asinorv.m of modern mathematics. This shows, I suppose, how much progress we have made in two thousand years, for it is a great deal more sophisticated than the Theorem of Pythagoras, which once received that title. All who have taught the subject know how patient one has to be, for the ideas take root gradually, even in students of good ability. This is not too surprising, since it took more than two centuries for calculus to evolve into what we now call analysis, and even a gifted student, guided by an expert teacher, cannot be expected to grasp all of the issues immediately.

Contents

1. Introductory Ideas.- 1.1 Foreword for the Student: Is Analysis Necessary?.- 1.2 The Concept of Number.- 1.3 The Language of Set Theory.- 1.4 Real Numbers.- 1.5 Induction.- 1.6 Inequalities.- 2. Sequences and Series.- 2.1 Sequences.- 2.2 Sums, Products and Quotients.- 2.3 Monotonie Sequences.- 2.4 Cauchy Sequences.- 2.5 Series.- 2.6 The Comparison Test.- 2.7 Series of Positive and Negative Terms.- 3. Functions and Continuity.- 3.1 Functions, Graphs.- 3.2 Sums, Products, Compositions; Polynomial and Rational Functions.- 3.3 Circular Functions.- 3.4 Limits.- 3.5 Continuity.- 3.6 Uniform Continuity.- 3.7 Inverse Functions.- 4. Differentiation.- 4.1 The Derivative.- 4.2 The Mean Value Theorems.- 4.3 Inverse Functions.- 4.4 Higher Derivatives.- 4.5 Taylor's Theorem.- 5. Integration.- 5.1 The Riemann Integral.- 5.2 Classes of Integrable Functions.- 5.3 Properties of Integrals.- 5.4 The Fundamental Theorem.- 5.5 Techniques of Integration.- 5.6 Improper Integrals of the First Kind.- 5.7 Improper Integrals of the Second Kind.- 6. The Logarithmic and Exponential Functions.- 6.1 A Function Defined by an Integral.- 6.2 The Inverse Function.- 6.3 Further Properties of the Exponential and Logarithmic Functions.- Sequences and Series of Functions.- 7.1 Uniform Convergence.- 7.2 Uniform Convergence of Series.- 7.3 Power Series.- 8. The Circular Functions.- 8.1 Definitions and Elementary Properties.- 8.2 Length.- 9. Miscellaneous Examples.- 9.1 Wallis's Formula.- 9.2 Stirling's Formula.- 9.3 A Continuous, Nowhere Differentiable Function.- Solutions to Exercises.- The Greek Alphabet.

最近チェックした商品