Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles (Control, Robotics and Sensors)

個数:

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles (Control, Robotics and Sensors)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9781849194891
  • DDC分類 629.8312

Full Description

This book gives an exposition of recently developed approximate dynamic programming (ADP) techniques for decision and control in human engineered systems. ADP is a reinforcement machine learning technique that is motivated by learning mechanisms in biological and animal systems. It is connected from a theoretical point of view with both adaptive control and optimal control methods. The book shows how ADP can be used to design a family of adaptive optimal control algorithms that converge in real-time to optimal control solutions by measuring data along the system trajectories. Generally, in the current literature adaptive controllers and optimal controllers are two distinct methods for the design of automatic control systems. Traditional adaptive controllers learn online in real time how to control systems, but do not yield optimal performance. On the other hand, traditional optimal controllers must be designed offline using full knowledge of the systems dynamics. It is also shown how to use ADP methods to solve multi-player differential games online. Differential games have been shown to be important in H-infinity robust control for disturbance rejection, and in coordinating activities among multiple agents in networked teams. The focus of this book is on continuous-time systems, whose dynamical models can be derived directly from physical principles based on Hamiltonian or Lagrangian dynamics.

Contents

Chapter 1: Introduction to optimal control, adaptive control and reinforcement learning
Chapter 2: Reinforcement learning and optimal control of discrete-time systems: Using natural decision methods to design optimal adaptive controllers
Part I: Optimal adaptive control using reinforcement learning structures
Chapter 3: Optimal adaptive control using integral reinforcement learning for linear systems
Chapter 4: Integral reinforcement learning (IRL) for non-linear continuous-time systems
Chapter 5: Generalized policy iteration for continuous-time systems
Chapter 6: Value iteration for continuous-time systems
Part II: Adaptive control structures based on reinforcement learning
Chapter 7: Optimal adaptive control using synchronous online learning
Chapter 8: Synchronous online learning with integral reinforcement
Part III: Online differential games using reinforcement learning
Chapter 9: Synchronous online learning for zero-sum two-player games and H-infinity control
Chapter 10: Synchronous online learning for multiplayer non-zero-sum games
Chapter 11: Integral reinforcement learning for zero-sum two-player games
Appendix A: Proofs

最近チェックした商品