Benefits of Bayesian Network Models

個数:
電子版価格
¥22,575
  • 電子版あり

Benefits of Bayesian Network Models

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 114 p.
  • 言語 ENG
  • 商品コード 9781848219922
  • DDC分類 519

Full Description

The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field.

Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty.

This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems.

Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.

Contents

Foreword by J.-f Aubry ix

Foreword by l Portinale xiii

Acknowledgments xv

Introduction xvii

Part 1 Bayesian Networks 1

Chapter 1 Bayesian Networks: a Modeling Formalism for System Dependability 3

1.1 Probabilistic graphical models: BN 5

1.1.1 BN: a formalism to model dependability 5

1.1.2 Inference mechanism 7

1.2 Reliability and joint probability distributions 8

1.2.1 Multi-state system example 8

1.2.2 Joint distribution 9

1.2.3 Reliability computing 9

1.2.4 Factorization 10

1.3 Discussion and conclusion 14

Chapter 2 Bayesian Network: Modeling Formalism of the Stucture Function of Boolean Systems 17

2.1 Introduction 17

2.2 BN models in the Boolean case 19

2.2.1 BN model from cut-sets 20

2.2.2 BN model from tie-sets 23

2.2.3 BN model from a top-down approach 25

2.2.4 BN model of a bowtie 26

2.3 Standard Boolean gates CPT 29

2.4 Non-deterministic CPT 31

2.5 Industrial applications 38

2.6 Conclusion 41

Chapter 3 Bayesian Network: Modeling Formalism of the Structure Function of Multi-State Systems 43

3.1 Introduction 43

3.2 BN models in the multi-state case 43

3.2.1 BN model of multi-state systems from tie-sets 44

3.2.2 BN model of multi-state systems from cut-sets 49

3.2.3 BN model of multi-state systems from functional and dysfunctional analysis 52

3.3 Non-deterministic CPT 58

3.4 Industrial applications 59

3.5 Conclusion 62

Part 2 Dynamic Bayesian Networks 65

Chapter 4 Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation 67

4.1 Introduction 67

4.2 Component modeled by a DBN 69

4.2.1 DBN model of a MC 70

4.2.2 DBN model of non-homogeneous MC 71

4.2.3 Stochastic process with exogenous constraint 72

4.3 Model of a dynamic multi-state system 75

4.4 Discussion on dependent processes 79

4.5 Conclusion 81

Chapter 5 Dynamic Bayesian Networks: Integrating Reliability Computation in the Control System 83

5.1 Introduction 83

5.2 Integrating reliability information into the control 84

5.3 Control integrating reliability modeled by DBN 85

5.3.1 Modeling and controlling an over-actuated system 86

5.3.2 Integrating reliability 88

5.4 Application to a drinking water network 90

5.4.1 DBN modeling 91

5.4.2 Results and discussion 92

5.5 Conclusion 95

5.6 Acknowledgments 96

Conclusion 97

Bibliography 101

Index 113

最近チェックした商品