Turbulent Multiphase Flows with Heat and Mass Transfer (Iste)

個数:
電子版価格
¥27,783
  • 電子版あり
  • ポイントキャンペーン

Turbulent Multiphase Flows with Heat and Mass Transfer (Iste)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9781848216174
  • DDC分類 530

Full Description

Numerous industrial systems or natural environments involve multiphase flows with heat and mass transfer. The authors of this book present the physical modeling of these flows, in a unified way, which can include various physical aspects and several levels of complexity.

Thermal engineering and nuclear reactors; the extraction and transport of petroleum products; diesel and rocket engines; chemical engineering reactors and fluidized beds; smoke or aerosol dispersion; landslides and avalanches - the modeling of multiphase flows with heat and mass transfer for all these situations can be developed following a common methodology. This book is devoted to the description of the mathematical bases of how to incorporate adequate physical ingredients in agreement with known experimental facts and how to make the model evolve according to the required complexity.

Contents

Acknowledgments xi

Introduction xiii

Part 1. Approach and General Equations 1

Chapter 1. Towards a Unified Description of Multiphase Flows 3

1.1. Continuous approach and kinetic approach 3

1.2. Eulerian-Lagrangian and Eulerian formulations 7

Chapter 2. Instant Equations for a Piecewise Continuous Medium 9

2.1. Integral and differential forms of balance equations 10

2.2. Phase mass balance equations in a piecewise continuous medium 13

2.3. Momentum balances 17

2.4. Energy balances 21

2.5. Position and interface area balance equations 23

2.6. Extension for a fluid phase that is a mixture 25

2.7. Completing the description of the medium 27

Chapter 3. Description of a "Mean Multiphase Medium" 29

3.1. The need for a mean description 29

3.2. How are mean values defined? 31

3.2.1. Temporal average 31

3.2.2. Volumetric average 32

3.2.3. Statistical average 34

3.2.4. Filtered average 35

3.3. Which average to choose, according to their advantages and disadvantages? 37

Chapter 4. Equations for the Mean Continuous Medium 39

4.1. Global balance equations for the mean medium 39

4.1.1. Total mass 39

4.1.2. Total momentum 40

4.1.3. Total energy 41

4.2. Balance equations for the phases of a mean medium 42

4.2.1. Phase mass 43

4.2.2. Phase momentum 44

4.2.3. Energies of each phase 47

4.2.4. Phase volume 49

4.3. Complete representation of the mean medium 49

4.3.1. Global representation 50

4.3.2. Multifluid representation 51

4.4. Mean equations of state 55

4.5. Extensions 58

4.5.1. Extension when a fluid phase is a mixture 58

4.5.2. Extension for dispersed media 59

4.6. Boundary conditions 61

Part 2. Modeling: A Single Approach Adaptable To Multiple Applications 67

Chapter 5. The Modeling of Interphase Exchanges 69

5.1. General methodology 69

5.2. Interface between phases and its mean area per unit of volume 71

5.2.1. Case of a suspension of liquid or solid particles 71

5.2.2. Case of a medium containing parcels of variable shapes and sizes 72

5.2.3. Case of a suspension of particles of constant and known sizes 74

5.3. Forces of contact and friction between phases 75

5.3.1. Pressure forces on spherical particles in a non-viscous flow 76

5.3.2. Friction on solid particles in steady flow 80

5.3.3. Slightly curved liquid-gas interfaces 87

5.3.4. Drops or bubbles 93

5.4. Heat transfers at the surface of a particle, without mass exchange 96

5.5. Heat and mass transfers during boiling 99

5.5.1. Slightly curved liquid-gas interfaces 99

5.5.2. Bubbles 105

5.6. Mass and heat exchanges by vaporization 107

5.6.1. Mass transfer by evaporation at a flat interface 107

5.6.2. Evaporation of a drop 113

5.6.3. Combustion of a drop 117

Chapter 6. Modeling Turbulent Dispersion Fluxes 119

6.1. Global modeling 119

6.1.1. General information 119

6.1.2. Kinetic energy of the "global fluctuations" 123

6.1.3. Modeling the kinetic energy of the fluctuations 128

6.1.4. Length scales for fluctuations and time scale for the dissipation of kinetic energy of fluctuations 132

6.1.5. Further studies on the dispersion flux of a phase 137

6.2. "Multifluid" modeling 147

6.2.1. The kinetic energy of the fluctuations in each phase 149

6.2.2. Modeling the balance equations of the kinetic energies of turbulence 152

6.2.3. The modeling of time or spatial scales 158

6.2.4. Modeling of the Reynolds tensor for every phase 162

Chapter 7. Modeling the Mean Gas-Liquid Interface Area per Unit Volume 165

7.1. Introduction 165

7.2. Initial equation for the mean interface area per unit volume 166

7.3. Model of the mean interface area during the "atomization" of a liquid jet 168

7.4. Effects of vaporization on the interface area 172

Chapter 8. "Large Eddy Simulation" Style Models 175

8.1. Introduction 175

8.2. Filtered equations and the nature of the models to be provided 177

8.3. Classic LES modeling for SGS additional fluxes 181

8.3.1. Reminder of LES in single-phase, constant density turbulent flows 181

8.3.2. Toward an extension for multiphase flows 183

8.4. Subgrid modeling of the interface area per unit volume 185

8.5. Partially Integrated Turbulence Modeling 188

Chapter 9. Contribution of Thermodynamics of Irreversible Processes 191

9.1. Global two-phase medium models 192

9.1.1. Entropy of a mean two-phase medium using the Prandtl model 194

9.1.2. Entropy for the k-ε model, in a medium with a variable density 200

9.2. Contribution of thermodynamics to multifluid models 206

Chapter 10. Experimental Methods 213

10.1. Introduction 213

10.2. Intrusive methods 214

10.2.1. Pitot tubes 215

10.2.2. Hot films 216

10.2.3. Optical needle probes (single probes, bi-probes and quadri-probes) 219

10.2.4. Wire networks 223

10.3. Non-intrusive methods 224

10.3.1. Particle image velocimetry (PIV) 225

10.3.2. Droplet tracking velocimetry 230

10.3.3. Laser Doppler anemometry (LDA) 234

10.3.4. Phase Doppler anemometry (PDA) 237

10.3.5. Ultrasonic Doppler Anemometry 241

10.3.6. Densimetry by attenuation of gamma, X-ray or neutron radiation 243

10.4. Advanced optical methods 245

10.4.1. Laser induced fluorescence 245

10.4.2. Interferometric methods (digital inline holography, Fourier interferometric imaging, ILIDS/IPI, rainbow) 252

Chapter 11. Some Experimental Results Pertaining to Multiphase Flow Properties that Are Still Little Understood 265

11.1. Atomization/fragmentation of liquid jets 265

11.2. Isolated bubbles, bubbles in swarm and their effects on carrier fluid 274

11.3. Boiling crisis 285

Part 3. From Fluidized Beds To Granular Media 297

Chapter 12. Fluidized Beds 299

12.1. Introduction 299

12.1.1. Classification of different fluidization regimes 299

12.1.2. Minimum fluidization and bubbling velocities 304

12.2. Complete models for the dynamics of fluidized beds 306

12.2.1. Bubbling fluidization regime 307

12.2.2. Turbulent fluidization regime 315

12.3. Global models for chemical conversion in fluidized beds 321

12.3.1. Bubbling regime fluidizations 321

12.3.2. Fast fluidization regime 324

12.3.3. Turbulent fluidization regime 325

12.4. Global models for heat transfers in fluidized beds 328

12.4.1. Bubbling fluidization regime 328

12.4.2. Fast fluidization regimes - circulating beds 331

12.5. Conclusion 334

Chapter 13. Generalizations for Granular Media 335

13.1. Introduction 335

13.2. Balance equations for mean granular media 336

13.3. Necessary closure approximations 342

13.4. Some already proposed methods 345

Chapter 14. Modeling of Cauchy Tensor of Sliding Contacts 349

14.1. Hypotheses and basic equations 349

14.2. Unclosed balance equation for Cauchy tensor of sliding contact 351

14.3. Closure approximations for irreversible terms 358

Chapter 15. Modeling the Kinetic Cauchy Stress Tensor 363

15.1. Prandtl-Bagnold modeling 364

15.2. K-lt or "turbulent granular gas" modeling 366

15.3. Toward a general model for all regimes 371

15.4. Boundary conditions at walls 373

Part 4. Studying Fluctuations and Probability Densities 377

Chapter 16. Fluctuations of the Gas Phase in Reactive Two-Phase Media 379

16.1. Specificities of reactive two-phase media 379

16.2. Probability density of composition fluctuations of the gas phase 380

16.2.1. Instant basic equations of the gas medium 382

16.2.2. PDF equation 385

16.3. Modeling the terms due to exchanges between phases 390

16.3.1. Total mass exchange 390

16.3.2. Mass exchange for species 392

16.3.3. Heat exchange 393

16.4. Modeling micromixing and turbulent dispersion 395

16.4.1. The "micromixing" term in PDF equations 395

16.4.2. Turbulent diffusion terms in PDF equations 396

16.5. Practical use of PDF equations 397

Chapter 17. Temperature Fluctuations in Condensed Phases 399

17.1. Problems 399

17.2. Instantaneous equation for the temperature of the liquid phase 401

17.3. Equation for the PDF of the temperature of the liquid 403

17.4. Closure of the equation of the temperature PDF 405

Chapter 18. Study of the PDF for Velocity Fluctuations and Sizes of Parcels 409

18.1. Phase velocity PDF equation 410

18.2. Modeling the exchanges between phases and the internal interactions 415

18.2.1. Terms of exchanges between phases 415

18.2.2. Internal dissipation and production of fluctuations 418

18.3. Practical calculation of PDF 419

18.4. The study of the sizes of the dispersed phase parcels 420

18.5. Eulerian-Lagrangian simulation of dispersed media 423

18.5.1. Lagrangian equations of the parcels 423

18.5.2. Stochastic simulations 426

Bibliography 431

Index 443

最近チェックした商品