Constraint Satisfaction Problems : Constraint Satisfaction Problems (Iste)

個数:
電子版価格
¥21,969
  • 電子版あり

Constraint Satisfaction Problems : Constraint Satisfaction Problems (Iste)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9781848214606
  • DDC分類 511

Full Description

A Constraint Satisfaction Problem (CSP) consists of a set of variables, a domain of values for each variable and a set of constraints. The objective is to assign a value for each variable such that all constraints are satisfied. CSPs continue to receive increased attention because of both their high complexity and their omnipresence in academic, industrial and even real-life problems. This is why they are the subject of intense research in both artificial intelligence and operations research. This book introduces the classic CSP and details several extensions/improvements of both formalisms and techniques in order to tackle a large variety of problems. Consistency, flexible, dynamic, distributed and learning aspects are discussed and illustrated using simple examples such as the n-queen problem.

Contents

1. Foundations of CSP.
2. Consistency Reinforcement Techniques.
3. CSP Solving Algorithms.
4. Search Heuristics.
5. Learning Techniques.
6. Maximal Constraint Satisfaction Problems.
7. Constraint Satisfaction and Optimization Problems.
8. Distibuted Constraint Satisfaction Problems.

About the Authors

Khaled Ghedira is the general managing director of the Tunis Science City in Tunisia, Professor at the University of Tunis, as well as the founding president of the Tunisian Association of Artificial Intelligence and the founding director of the SOIE research laboratory. His research areas include MAS, CSP, transport and production logistics, metaheuristics and security in M/E-government. He has led several national and international research projects, supervised 30 PhD theses and more than 50 Master's theses, co-authored about 300 journal, conference and book research papers, written two text books on metaheuristics and production logistics and co-authored three others.

Contents

Preface ix

Introduction xi

Chapter 1 Foundations of CSP 1

1.1.Basicconcepts 1

1.2.CSPframework 3

1.2.1.Formalism 4

1.2.2.Areasofapplication 6

1.2.3.Extensions 17

1.3.Bibliography 22

Chapter 2 Consistency Reinforcement Techniques 29

2.1.Basicnotions 29

2.1.1.Equivalence 29

2.1.2.K-consistency 30

2.2.Arcconsistencyreinforcementalgorithms 32

2.2.1.ac-1 33

2.2.2.ac-2 36

2.2.3.ac-3 38

2.2.4.ac-4 41

2.2.5.ac-5 44

2.2.6.ac-6 50

2.2.7.ac-7 54

2.2.8 Ac2000 61

2.2.9 Ac2001 65

2.3.Bibliography 69

Chapter 3 CSP Solving Algorithms 73

3.1.Completeresolutionmethods 73

3.1.1.Thebacktrackingalgorithm 74

3.1.2.Look-backalgorithms 76

3.1.3.Look-aheadalgorithms 86

3.2.Experimentalvalidation 92

3.2.1.Randomgenerationofproblems 92

3.2.2.Phasetransition 94

3.3.Bibliography 96

Chapter 4 Search Heuristics 99

4.1.Organizationofthesearchspace 99

4.1.1.Parallelapproaches 99

4.1.2.Distributedapproaches 100

4.1.3 Collaborative approaches 102

4.2 Ordering heuristics 102

4.2.1 Illustrative example 102

4.2.2 Variable ordering 109

4.2.3 Value ordering 115

4.2.4 Constraints-based ordering 116

4.3 Bibliography 117

Chapter 5 Learning Techniques 121

5.1.The"nogood"concept 122

5.1.1.Exampleofunionandprojection 123

5.1.2.Useofnogoods 125

5.1.3.Nogoodhandling 125

5.2.Nogood-recordingalgorithm 126

5.3.Thenogood-recording-forward-checkingalgorithm 129

5.4.Theweak-commitment-nogood-recordingalgorithm 132

5.5.Bibliography 133

Table of Contents vii

Chapter 6. Maximal Constraint Satisfaction Problems 135

6.1 Branch and bound algorithm 136

6.2.PartialForward-Checkingalgorithm 138

6.3.Weak-commitmentsearch 142

6.4.GENETmethod 144

6.5.Distributedsimulatedannealing 146

6.6.Distributedandguidedgeneticalgorithm 147

6.6.1.Basicprinciples 148

6.6.2.Themulti-agentmodel 150

6.6.3.Geneticprocess 152

6.6.4.Extensions 158

6.7 Bibliography 162

Chapter 7 Constraint Satisfaction and Optimization Problems 165

7.1.Formalism 166

7.2 Resolution methods 166

7.2.1 Branch-and-bound algorithm 167

7.2.2 Tunneling algorithm 170

7.3 Bibliography 178

Chapter 8 Distributed Constraint Satisfaction Problems 181

8.1.DisCSPframework 183

8.1.1.Formalism 183

8.1.2.Distributionmodes 185

8.1.3.Communicationmodels 191

8.1.4.Convergenceproperties 193

8.2.Distributedconsistencyreinforcement 195

8.2.1.TheDisAC-4algorithm 196

8.2.2.TheDisAC-6algorithm 197

8.2.3.TheDisAC-9algorithm 198

8.2.4.TheDRACalgorithm 199

8.3 Distributed resolution 200

8.3.1.Asynchronousbacktrackingalgorithm 201

8.3.2.Asynchronousweak-commitmentsearch 204

8.3.3 Asynchronous aggregation search 205

8.3.4.Approachesbasedoncanonicaldistribution 207

8.3.5.DOCapproach 208

8.3.6 Generalization of DisCSP algorithms to several variables 214

8.4.Bibliography 215

Index 221