Graphs Theory and Applications : With Exercises and Problems

個数:
電子版価格
¥22,575
  • 電子版あり

Graphs Theory and Applications : With Exercises and Problems

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 282 p.
  • 言語 ENG
  • 商品コード 9781848210707
  • DDC分類 511.5

基本説明

Provides a pedagogical and comprehensive introduction to graph theory and its applications. It contains all the standard basic material and develops significant topics and applications, such as: colorings and the timetabling problem, matchings and the optimal assignment problem, and Hamiltonian cycles and the traveling salesman problem, to name but a few.

Full Description

This book provides a comprehensive and pedagogical introduction to graph theory and its applications. It contains all the standard basic material and develops significant topics and applications, such as: colorings and the timetabling problem, matchings and the optimal assignment problem, and Hamiltonian cycles and the travelling salesman problem, to name but a few. Exercises at various levels are given at the end of each chapter, and a final chapter presents a few general problems with hints for solutions, thus providing the reader with the opportunity to test and refine their knowledge on the subject. An appendix outlines the basis of computational complexity theory, in particular the definition of NP-completeness, which is essential for algorithmic applications.

Contents

Introduction 17

Chapter 1. Basic Concepts 21

1.1 The origin of the graph concept 21

1.2 Definition of graphs 24

1.3 Subgraphs 28

1.4 Paths and cycles 29

1.5 Degrees 33

1.6 Connectedness 35

1.7 Bipartite graphs 36

1.8 Algorithmic aspects 37

1.9 Exercises 41

Chapter 2. Trees 45

2.1 Definitions and properties 45

2.2 Spanning trees 49

2.3 Application: minimum spanning tree problem 54

2.4 Connectivity 59

2.5 Exercises 66

Chapter 3. Colorings 71

3.1 Coloring problems 71

3.2 Edge coloring 71

3.3 Algorithmic aspects 73

3.4 The timetabling problem 75

3.5 Exercises 81

Chapter 4. Directed Graphs 83

4.1 Definitions and basic concepts 83

4.2 Acyclic digraphs 90

4.3 Arborescences 92

4.4 Exercises 95

Chapter 5. Search Algorithms 97

5.1 Depth-first search of an arborescence 97

5.2 Optimization of a sequence of decisions 103

5.3 Depth-first search of a digraph 109

5.4 Exercises 117

Chapter 6. Optimal Paths 119

6.1 Distances and shortest paths problems 119

6.2 Case of non-weighted digraphs: breadth-first search 120

6.3 Digraphs without circuits 125

6.4 Application to scheduling 128

6.5 Positive lengths 134

6.6 Other cases 142

6.7 Exercises 143

Chapter 7. Matchings 149

7.1 Matchings and alternating paths 149

7.2 Matchings in bipartite graphs 152

7.3 Assignment problem 156

7.4 Optimal assignment problem 164

7.5 Exercises 171

Chapter 8. Flows 173

8.1 Flows in transportation networks 173

8.2 The max-flow min-cut theorem 177

8.3 Maximum flow algorithm 180

8.4 Flow with stocks and demands 188

8.5 Revisiting theorems 191

8.6 Exercises 194

Chapter 9. Euler Tours 197

9.1 Euler trails and tours 197

9.2 Algorithms 201

9.3 The Chinese postman problem 207

9.4 Exercises 212

Chapter 10. Hamilton Cycles 215

10.1 Hamilton cycles 215

10.2 The traveling salesman problem 218

10.3 Approximation of a difficult problem 220

10.4 Approximation of themetric TSP 223

10.5 Exercises 234

Chapter 11. Planar Representations 237

11.1 Planar graphs 237

11.2 Other graph representations 242

11.3 Exercises 244

Chapter 12. Problems with Comments 247

12.1 Problem 1: A proof of k-connectivity 247

12.2 Problem2: An application to compiler theory 249

12.3 Problem3: Kernel of a digraph 251

12.4 Problem 4: Perfect matching in a regular bipartite graph 253

12.5 Problem5: Birkhoff-Von Neumann's theorem 254

12.6 Problem 6: Matchings and tilings 256

12.7 Problem7: Strip mining 258

Appendix A. Expression of Algorithms 261

Appendix B. Bases of Complexity Theory 267

Bibliography 277

Index 279

最近チェックした商品