平面領域におけるナヴィエ・ストークス方程式<br>Navier-stokes Equations in Planar Domains

個数:

平面領域におけるナヴィエ・ストークス方程式
Navier-stokes Equations in Planar Domains

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 316 p.
  • 言語 ENG
  • 商品コード 9781848162754
  • DDC分類 519

基本説明

Aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics.

Full Description

This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity".A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem.This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics.

Contents

Basic Theory: Introduction; Existence and Uniqueness of Smooth Solutions; Estimates for Smooth Solutions; Extension of the Solution Operator; Measures as Initial Data; Asymptotic Behavior for Large Time; Some Theorems from Functional Analysis; Approximate Solutions: Introduction; Notation; Finite Difference Approximation to Second-Order Boundary-Value Problems; From Hermitian Derivative to the Compact Discrete Biharmonic Operator; Polynomial Approach to the Discrete Biharmonic Operator; Compact Approximation of the Navier - Stokes Equations in Streamfunction Formulation; Fully Discrete Approximation of the Navier - Stokes Equations; Numerical Simulations of the Driven Cavity Problem.

最近チェックした商品