- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Thermal control systems are an essential element of spacecraft design, ensuring that all parts of the spacecraft remain within acceptable temperature ranges at all times. Spacecraft thermal control describes the fundamentals of thermal control design and reviews current thermal control technologies. The book begins with an overview of space missions and a description of the space environment, followed by coverage of the heat transfer processes relevant to the field. In the third part of the book, current thermal control technologies are described, and in the final part, design, analysis and testing techniques are reviewed.
Contents
List of figuresList of tablesForewordAbout the authorsChapter 1: The space missionAbstract:1.1 Introduction1.2 Mission analysis and design1.3 Elements of a space mission1.4 Types of space missions1.5 Spacecraft design: subsystems and payloadsChapter 2: Space environmentAbstract:2.1 Introduction2.2 Ground environment2.3 Launch thermal environment2.4 In-orbit thermal environment2.5 Other in-orbit environmental aspectsChapter 3: Keplerian orbitsAbstract:3.1 One-body problem3.2 The orbit in space3.3 Orbit perturbations3.4 Lighting conditions3.5 Types of orbitsChapter 4: Conductive heat transferAbstract:4.1 Introduction4.2 Fourier's law4.3 The heat diffusion equation4.4 Boundary and initial conditions4.5 Conductive shape factors4.6 Numerical methods in heat conductionChapter 5: Thermal radiation heat transferAbstract:5.1 Nature of thermal radiation5.2 Blackbody radiation5.3 Properties of real surfaces5.4 View factors5.5 Radiation exchange between opaque, diffuse, and grey surfaces in an enclosureChapter 6: Thermal control surfacesAbstract:6.1 Introduction6.2 Thermal control coatings6.3 Thermal coating degradationChapter 7: Insulation systemsAbstract:7.1 Introduction7.2 Multilayer insulations7.3 FoamsChapter 8: RadiatorsAbstract:8.1 Introduction8.2 Passive cryogenic radiant coolers8.3 Thermal efficiency8.4 V-groove radiatorsChapter 9: LouversAbstract:9.1 Introduction9.2 Description of louvers9.3 Performance of louvers9.4 MEMS louversChapter 10: Mechanical interfacesAbstract:10.1 Introduction10.2 Thermal contact conductance10.3 Thermal fillers10.4 Thermal braids and strapsChapter 11: Heat pipesAbstract:11.1 Introduction11.2 Capillarity11.3 Working fluids11.4 Wicks11.5 Other capillary heat transfer designsChapter 12: Phase change capacitorsAbstract:12.1 Introduction12.2 Characteristics of phase change materials12.3 Materials data12.4 Phase change material technology12.5 The performance of phase change materialsChapter 13: HeatersAbstract:13.1 Introduction13.2 Electrical heaters13.3 Radioisotope heat sources13.4 Heat switchesChapter 14: Pumped fluid loopsAbstract:14.1 Introduction14.2 Mechanically pumped single-phase fluid loops14.3 Mechanically pumped two-phase fluid loopsChapter 15: Thermoelectric coolingAbstract:15.1 Introduction15.2 Fundamentals15.3 Space applicationsChapter 16: Cryogenic systemsAbstract:16.1 Introduction16.2 Refrigerating systemsChapter 17: Thermal protection systemsAbstract:17.1 Introduction17.2 Ablative systems17.3 Radiative systems17.4 Other thermal protection techniquesChapter 18: Thermal control designAbstract:18.1 Design objectives and requirements18.2 Design process18.3 Load casesChapter 19: Thermal mathematical modelsAbstract:19.1 Introduction19.2 Thermal analysis softwareChapter 20: Thermal control testingAbstract:20.1 Introduction20.2 Testing objectives20.3 Model philosophy20.4 Development tests20.5 Thermal balance tests20.6 Thermal vacuum tests20.7 Test facilitiesChapter 21: ConclusionIndex