AI and Digitalization in Energy Management (Energy Engineering)

個数:
  • 予約

AI and Digitalization in Energy Management (Energy Engineering)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 480 p.
  • 言語 ENG
  • 商品コード 9781839539794

Full Description

Energy management involves the planning and operation of energy production, consumption, distribution and storage, with objectives including resource conservation, climate protection and cost savings. Growth in renewable energy - essential for the transition to a decarbonised energy system - adds the challenge of intermittency, making energy management all the more important.

This book explores the role of digitalization and the growing interest in using AI for energy management. Edited by a team of senior scientists, with ample project and industry experience, the book systematically covers methods, applications including forecasting and maintenance, and economic aspects.

The chapters cover solar and meteorological data collection and simulation, digital twins and data wrangling, ML, game theory and AI for energy management, edge to cloud, federated learning and quantum computing for energy management. intra-hour solar forecasting, use of synchrophasor technology, AI-powered energy conversion and resilience, explainable AI, electric mobility integration, optimization for EV adoption, predictive PV maintenance, AI and robotics for PV inspection, and blockchain-based microgrids.

AI and Digitalization in Energy Management will prove a useful resource for researchers in universities, research institutes and in industry involved with clean energy and AI systems, grid operators, as well as energy policy makers and advanced students in energy engineering.

Contents

Chapter 1: Introduction
Chapter 2: Sensor-based Collection of Solar and Meteorological Data
Chapter 3: Synthetic Data Generation Through PHIL Simulations
Chapter 4: Data Generation Through Digital Twins
Chapter 5: Data Wrangling
Chapter 6: Machine Learning
Chapter 7: Game Theory and AI For Strategic Energy Management
Chapter 8: Edge To Cloud
Chapter 9: AI in Energy Management: The Market View
Chapter 10: Federated Learning for energy management applications
Chapter 11: Quantum Computing for Energy Management: Semi Non-Technical Guide for Practitioners
Chapter 12: Mapping All-Sky Images to GHI Measurements for Intra-hour Solar Forecasting
Chapter 13: Realtime Measurement of Electrical Signal in Medium Voltage Distribution Network using Synchrophasor Technology
Chapter 14: AI-Powered Power Conversion
Chapter 15: Empowering Resilience: AI and the Future of Microgrids
Chapter 16: Building Trust by Design Through Explainable AI for Resilient and Cognitive Smart Grids
Chapter 17: Electric Mobility Integration: A Deep Dive into AI Solutions
Chapter 18: Optimization problems related to electric vehicle adoption
Chapter 19: Predictive Photovoltaic Maintenance Strategies
Chapter 20: AI and Robotic techniques for PV inspection
Chapter 21: Towards a Blockchain-based Smart Microgrid: A Peer to Peer Renewable Energy Trading Framework
Chapter 22: Conclusions

最近チェックした商品