Federated Learning for Multimedia Data Processing and Security in Industry 5.0 (Computing and Networks)

個数:

Federated Learning for Multimedia Data Processing and Security in Industry 5.0 (Computing and Networks)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 346 p.
  • 言語 ENG
  • 商品コード 9781839537578
  • DDC分類 670.285

Full Description

Industry 5.0 is the upcoming industrial revolution where people will be working together with smart machines and robots, thereby bringing human touch and intelligence back to the decision-making process. Challenges include the security and privacy of sensitive multimedia data and near zero latency for mission critical applications.

Federated learning is a machine learning technique that trains algorithms across multiple decentralized edge devices or servers by holding local data samples without exchanging them. This approach stands in contrast to traditional centralized machine learning techniques where all local datasets are uploaded to one server. This method enables multiple actors to build a common, robust machine learning model without sharing data, thus addressing critical issues such as data privacy, data security, data access rights and access to heterogeneous data.

The objective of this book is to show how federated learning can solve multimedia data processing and security challenges in Industry 5.0. The book introduces new research paradigms for the security and privacy preservation of multimedia data. It provides a detailed discussion on how federated learning can be used to handle big data, preserve privacy, reduce computational and communication costs; and shows how to integrate federated learning with other disruptive technologies including blockchain, digital twins and 5G and beyond.

Federated Learning for Multimedia Data Processing and Security in Industry 5.0 is an essential reference for advanced students, lecturers, and academic and industry researchers working in the fields of machine learning federated learning, computer and network security, data science, multimedia, computer vision and Industry 5.0 applications.

Contents

Chapter 1: Federated learning-enabled 5G and beyond for Industry 5.0
Chapter 2: Federated learning for optimized communication in Industry 5.0
Chapter 3: Federated learning enabled digital twins for Industry 5.0: perspectives, challenges, and future directions
Chapter 4: Collaborative intelligence: federated learning-enabled edge computing in Industry 5.0
Chapter 5: Infusion of federated learning for cybersecurity in Industry 5.0
Chapter 6: Cybersecurity with blockchain for digital twins
Chapter 7: Blockchain-based federated learning for Industry 5.0 applications
Chapter 8: Blockchain implementation of public key infrastructure for Industry 5.0 applications
Chapter 9: Federated learning for Supply Chain Management 5.0
Chapter 10: Federated learning for cobots in Industry 5.0
Chapter 11: Federated learning in medical education in Industry 5.0
Chapter 12: A comprehensive survey on enhanced privacy techniques for federated learning in healthcare systems
Chapter 13: FL for secured medical image analysis
Conclusion

最近チェックした商品