Deep Reinforcement Learning for Reconfigurable Intelligent Surfaces and UAV Empowered Smart 6G Communications (Telecommunications)

個数:

Deep Reinforcement Learning for Reconfigurable Intelligent Surfaces and UAV Empowered Smart 6G Communications (Telecommunications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 293 p.
  • 言語 ENG
  • 商品コード 9781839536410
  • DDC分類 004.6

Full Description

Reconfigurable intelligent surface (RIS) has emerged as a cutting-edge technology for beyond 5G and 6G networks due to its low-cost hardware production, nearly passive nature, easy deployment, communication without new waves, and energy-saving benefits. Unmanned aerial vehicle (UAV)-assisted wireless networks significantly enhance network coverage.

Resource allocation and real-time decision-making optimisation play a pivotal role in approaching the optimal performance in UAV- and RIS-aided wireless communications. But the existing contributions typically assume having a static environment and often ignore the stringent flight time constraints in real-life applications. It is crucial to improve the decision-making time for meeting the stringent requirements of UAV-assisted wireless networks. Deep reinforcement learning (DRL), which is a combination of reinforcement learning and neural networks, is used to maximise network performance, reduce power consumption, and improve the processing time for real-time applications. DRL algorithms can help UAVs and RIS work fully autonomously, reduce energy consumption and operate optimally in an unexpected environment.

This co-authored book explores the many challenges arising from real-time and autonomous decision-making for 6G. The goal is to provide readers with comprehensive insights into the models and techniques of deep reinforcement learning and its applications in 6G networks and internet-of-things with the support of UAVs and RIS.

Deep Reinforcement Learning for Reconfigurable Intelligent Surfaces and UAV Empowered Smart 6G Communications is aimed at a wide audience of researchers, practitioners, scientists, professors and advanced students in engineering, computer science, information technology, and communication engineering, and networking and ubiquitous computing professionals.

Contents

Part I: Introduction to machine learning and neural networks

Chapter 1: Artificial intelligence, machine learning, and deep learning
Chapter 2: Deep neural networks


Part II: Deep reinforcement learning

Chapter 3: Markov decision process
Chapter 4: Value function approximation for continuous state-action space
Chapter 5: Policy search methods for reinforcement learning
Chapter 6: Actor-critic learning


Part III: Deep reinforcement learning in UAV-assisted 6G communication

Chapter 7: UAV-assisted 6G communications
Chapter 8: Distributed deep deterministic policy gradient for power allocation control in UAV-to-UAV-based communications
Chapter 9: Non-cooperative energy-efficient power allocation game in UAV-to-UAV communication: a multi-agent deep reinforcement learning approach
Chapter 10: Real-time energy harvesting-aided scheduling in UAV-assisted D2D networks
Chapter 11: 3D trajectory design and data collection in UAV-assisted networks


Part IV: Deep reinforcement learning in reconfigurable intelligent surface-empowered 6G communications

Chapter 12: RIS-assisted 6G communications
Chapter 13: Real-time optimisation in RIS-assisted D2D communications
Chapter 14: RIS-assisted UAV communications for IoT with wireless power transfer using deep reinforcement learning
Chapter 15: Multi-agent learning in networks supported by RIS and multi-UAVs

最近チェックした商品