Machine Learning in Medical Imaging and Computer Vision (Healthcare Technologies)

個数:

Machine Learning in Medical Imaging and Computer Vision (Healthcare Technologies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 382 p.
  • 言語 ENG
  • 商品コード 9781839535932
  • DDC分類 006.31

Full Description

Medical images can highlight differences between healthy tissue and unhealthy tissue and these images can then be assessed by a healthcare professional to identify the stage and spread of a disease so a treatment path can be established. With machine learning techniques becoming more prevalent in healthcare, algorithms can be trained to identify healthy or unhealthy tissues and quickly differentiate between the two. Statistical models can be used to process numerous images of the same type in a fraction of the time it would take a human to assess the same quantity, saving time and money in aiding practitioners in their assessment.

This edited book discusses feature extraction processes, reviews deep learning methods for medical segmentation tasks, outlines optimisation algorithms and regularisation techniques, illustrates image classification and retrieval systems, and highlights text recognition tools, game theory, and the detection of misinformation for improving healthcare provision.

Machine Learning in Medical Imaging and Computer Vision provides state of the art research on the integration of new and emerging technologies for the medical imaging processing and analysis fields. This book outlines future directions for increasing the efficiency of conventional imaging models to achieve better performance in diagnoses as well as in the characterization of complex pathological conditions.

The book is aimed at a readership of researchers and scientists in both academia and industry in computer science and engineering, machine learning, image processing, and healthcare technologies and those in related fields.

Contents

Chapter 1: Machine learning algorithms and applications in medical imaging processing
Chapter 2: Review of deep learning methods for medical segmentation tasks in brain tumors
Chapter 3: Optimization algorithms and regularization techniques using deep learning
Chapter 4: Computer-aided diagnosis in maritime healthcare: review of spinal hernia
Chapter 5: Diabetic retinopathy detection using AI
Chapter 6: A survey image classification using convolutional neural network in deep learning
Chapter 7: Text recognition using CRNN models based on temporal classification and interpolation methods
Chapter 8: Microscopic Plasmodium classification (MPC) using robust deep learning strategies for malaria detection
Chapter 9: Medical image classification and retrieval using deep learning
Chapter 10: Game theory, optimization algorithms and regularization techniques using deep learning in medical imaging
Chapter 11: Data preparation for artificial intelligence in federated learning: the influence of artifacts on the composition of the mammography database
Chapter 12: Spatial cognition by the visually impaired: image processing with SIFT/BRISK-like detector and two-keypoint descriptor on Android CameraX
Chapter 13: Feature extraction process through hypergraph learning with the concept of rough set classification
Chapter 14: Machine learning for neurodegenerative disease diagnosis: a focus on amyotrophic lateral sclerosis (ALS)
Chapter 15: Using deep/machine learning to identify patterns and detecting misinformation for pandemics in the post-COVID-19 era
Chapter 16: Integrating medical imaging using analytic modules and applications

最近チェックした商品