Applications of Machine Learning and Data Analytics Models in Maritime Transportation (Transportation)

個数:

Applications of Machine Learning and Data Analytics Models in Maritime Transportation (Transportation)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 319 p.
  • 言語 ENG
  • 商品コード 9781839535598
  • DDC分類 387.50285631

Full Description

Machine learning and data analytics can be used to inform technical, commercial and financial decisions in the maritime industry. Applications of Machine Learning and Data Analytics Models in Maritime Transportation explores the fundamental principles of analysing maritime transportation related practical problems using data-driven models, with a particular focus on machine learning and operations research models.

Data-enabled methodologies, technologies, and applications in maritime transportation are clearly and concisely explained, and case studies of typical maritime challenges and solutions are also included. The authors begin with an introduction to maritime transportation, followed by chapters providing an overview of ship inspection by port state control, and the principles of data driven models. Further chapters cover linear regression models, Bayesian networks, support vector machines, artificial neural networks, tree-based models, association rule learning, cluster analysis, classic and emerging approaches to solving practical problems in maritime transport, incorporating shipping domain knowledge into data-driven models, explanation of black-box machine learning models in maritime transport, linear optimization, advanced linear optimization, and integer optimization. A concluding chapter provides an overview of coverage and explores future possibilities in the field.

The book will be especially useful to researchers and professionals with expertise in maritime research who wish to learn how to apply data analytics and machine learning to their fields.

Contents

Chapter 1: Introduction of maritime transportation
Chapter 2: Ship inspection by port state control
Chapter 3: Introduction to data-driven models
Chapter 4: Key elements of data-driven models
Chapter 5: Linear regression models
Chapter 6: Bayesian networks
Chapter 7: Support vector machine
Chapter 8: Artificial neural network
Chapter 9: Tree-based models
Chapter 10: Association rule learning
Chapter 11: Cluster analysis
Chapter 12: Classic and emerging approaches to solving practical problems in maritime transport
Chapter 13: Incorporating shipping domain knowledge into data-driven models
Chapter 14: Explanation of black-box ML models in maritime transport
Chapter 15: Linear optimization
Chapter 16: Advanced linear optimization
Chapter 17: Integer optimization
Chapter 18: Conclusion

最近チェックした商品