The Deep Learning with PyTorch Workshop : Build deep neural networks and artificial intelligence applications with PyTorch

個数:

The Deep Learning with PyTorch Workshop : Build deep neural networks and artificial intelligence applications with PyTorch

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 330 p.
  • 言語 ENG
  • 商品コード 9781838989217
  • DDC分類 006.31

Full Description

Get a head start in the world of AI and deep learning by developing your skills with PyTorch

Key Features

Learn how to define your own network architecture in deep learning
Implement helpful methods to create and train a model using PyTorch syntax
Discover how intelligent applications using features like image recognition and speech recognition really process your data

Book DescriptionWant to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you're starting from scratch.

It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures.

The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues.

By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps.

What you will learn

Explore the different applications of deep learning
Understand the PyTorch approach to building neural networks
Create and train your very own perceptron using PyTorch
Solve regression problems using artificial neural networks (ANNs)
Handle computer vision problems with convolutional neural networks (CNNs)
Perform language translation tasks using recurrent neural networks (RNNs)

Who this book is forThis deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.

Contents

Table of Contents

Introduction to Deep Learning and PyTorch
Building Blocks of Neural Networks
A Classification Problem Using DNNs
Convolutional Neural Networks
Style Transfer
Analyzing the Sequence of Data with RNNs

最近チェックした商品