PyTorch 1.x Reinforcement Learning Cookbook : Over 60 recipes to design, develop, and deploy self-learning AI models using Python

個数:

PyTorch 1.x Reinforcement Learning Cookbook : Over 60 recipes to design, develop, and deploy self-learning AI models using Python

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 340 p.
  • 言語 ENG
  • 商品コード 9781838551964
  • DDC分類 006.32

Full Description

Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes

Key Features

Use PyTorch 1.x to design and build self-learning artificial intelligence (AI) models
Implement RL algorithms to solve control and optimization challenges faced by data scientists today
Apply modern RL libraries to simulate a controlled environment for your projects

Book DescriptionReinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use.

With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game.

By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.

What you will learn

Use Q-learning and the state-action-reward-state-action (SARSA) algorithm to solve various Gridworld problems
Develop a multi-armed bandit algorithm to optimize display advertising
Scale up learning and control processes using Deep Q-Networks
Simulate Markov Decision Processes, OpenAI Gym environments, and other common control problems
Select and build RL models, evaluate their performance, and optimize and deploy them
Use policy gradient methods to solve continuous RL problems

Who this book is forMachine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.

Contents

Table of Contents

Getting started with reinforcement learning and PyTorch
Markov Decision Process and Dynamic Programming
Monte Carlo Methods for making numerical estimations
Temporal Difference and Q-Learning
Solving Multi Armed Bandit problems
Scaling up Learning with Function Approximation
Deep Q-Networks in Action
Implementing Policy Gradients and Policy Optimization
Capstone Project: Playing Flappy Bird with DQN

最近チェックした商品