Deep Learning for Natural Language Processing : Solve your natural language processing problems with smart deep neural networks

個数:

Deep Learning for Natural Language Processing : Solve your natural language processing problems with smart deep neural networks

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 372 p.
  • 言語 ENG
  • 商品コード 9781838550295
  • DDC分類 006.32

Full Description

Gain the knowledge of various deep neural network architectures and their application areas to conquer your NLP issues.

Key Features

Gain insights into the basic building blocks of natural language processing
Learn how to select the best deep neural network to solve your NLP problems
Explore convolutional and recurrent neural networks and long short-term memory networks

Book DescriptionApplying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts off by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you'll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In the later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search.

By the end of this book, you will not only have sound knowledge of natural language processing but also be able to select the best text pre-processing and neural network models to solve a number of NLP issues.

What you will learn

Understand various pre-processing techniques for deep learning problems
Build a vector representation of text using word2vec and GloVe
Create a named entity recognizer and parts-of-speech tagger with Apache OpenNLP
Build a machine translation model in Keras
Develop a text generation application using LSTM
Build a trigger word detection application using an attention model

Who this book is forIf you're an aspiring data scientist looking for an introduction to deep learning in the NLP domain, this is just the book for you. Strong working knowledge of Python, linear algebra, and machine learning is a must.

Contents

Table of Contents

Introduction to Natural Language Processing
Application of Natural Language Processing
Introduction to Neural Networks
Foundations of Convolutional Neural Network
Recurrent Neural Networks
Gated Recurrent Units
Long Short-Term Memory (LSTM)
State-of-the-Art Natural Language Processing
A Practical NLP Project Workflow in an Organization

最近チェックした商品