Python Data Cleaning and Preparation Best Practices : A practical guide to organizing and handling data from various sources and formats using Python

個数:

Python Data Cleaning and Preparation Best Practices : A practical guide to organizing and handling data from various sources and formats using Python

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 456 p.
  • 言語 ENG
  • 商品コード 9781837634743
  • DDC分類 005.133

Full Description

Take your data preparation skills to the next level by converting any type of data asset into a structured, formatted, and readily usable dataset

Key Features

Maximize the value of your data through effective data cleaning methods
Enhance your data skills using strategies for handling structured and unstructured data
Elevate the quality of your data products by testing and validating your data pipelines
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionProfessionals face several challenges in effectively leveraging data in today's data-driven world. One of the main challenges is the low quality of data products, often caused by inaccurate, incomplete, or inconsistent data. Another significant challenge is the lack of skills among data professionals to analyze unstructured data, leading to valuable insights being missed that are difficult or impossible to obtain from structured data alone.
To help you tackle these challenges, this book will take you on a journey through the upstream data pipeline, which includes the ingestion of data from various sources, the validation and profiling of data for high-quality end tables, and writing data to different sinks. You'll focus on structured data by performing essential tasks, such as cleaning and encoding datasets and handling missing values and outliers, before learning how to manipulate unstructured data with simple techniques. You'll also be introduced to a variety of natural language processing techniques, from tokenization to vector models, as well as techniques to structure images, videos, and audio.
By the end of this book, you'll be proficient in data cleaning and preparation techniques for both structured and unstructured data.What you will learn

Ingest data from different sources and write it to the required sinks
Profile and validate data pipelines for better quality control
Get up to speed with grouping, merging, and joining structured data
Handle missing values and outliers in structured datasets
Implement techniques to manipulate and transform time series data
Apply structure to text, image, voice, and other unstructured data

Who this book is forWhether you're a data analyst, data engineer, data scientist, or a data professional responsible for data preparation and cleaning, this book is for you. Working knowledge of Python programming is needed to get the most out of this book.

Contents

Table of Contents

Data Ingestion Techniques
Importance of Data Quality
Data Profiling - Understanding Data Structure, Quality, and Distribution
Cleaning Messy Data and Data Manipulation
Data Transformation - Merging and Concatenating
Data Grouping, Aggregation, Filtering, and Applying Functions
Data Sinks
Detecting and Handling Missing Values and Outliers
Normalization and Standardization
Handling Categorical Features
Consuming Time Series Data
Text Preprocessing in the Era of LLMs
Image and Audio Preprocessing with LLMs

最近チェックした商品