Model-Based Parameter Estimation in Computational Electromagnetics (Electromagnetic Waves)

個数:
  • 予約

Model-Based Parameter Estimation in Computational Electromagnetics (Electromagnetic Waves)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 350 p.
  • 言語 ENG
  • 商品コード 9781837245376

Full Description

Computational electromagnetics (CEM) involves modeling the interaction of electromagnetic fields with physical objects and their environment, such as the radiation emitted by antennas and the fields scattered from radar targets.

First-principles or generating models (GMs) based on Maxwell's equations, provide a microscopic, spatial description of the charge and current distributions that normally require several samples per wavelength. Model-based parameter estimation (MBPE) uses a macroscopic, reduced-order, physically based fitting model (FM) to adaptively sample GM results while minimizing the number needed to quantify various EM observables such as frequency responses, far-field radiation patterns, interaction effects, etc. The FMs can reduce the needed GM sampling cost by a factor of 10 or more while yielding a continuous result of needed observables to avoid missing important details. The FMs can also indicate the numerical uncertainty of such quantities from measured as well as computed data.

After an introduction to the subject and its mathematical background, subsequent chapters cover system identification, MBPE techniques and the various roles of Prony's methods as FMs in CEM. Other related topics that are covered include derivative sampling, radiation pattern synthesis and estimation, and assorted other applications.

The book is aimed at the computational electromagnetics community and those working in applied sciences with complex models such as acoustics, mechanical structures, geo-physics and physics.

Contents

Chapter 1: System Identification and Model-Based Parameter Estimation
Chapter 2: A Brief Sampling of System Identification and Model-Based Parameter Estimation Applications in Various Disciplines
Chapter 3: Mathematical Background of MBPE
Chapter 4: Sampling Strategies for Effective Implementation of Prony's Method
Chapter 5: Conserving Waveform Information Content in the Spectral Domain using Prony's Method
Chapter 6: Minimizing the Number of Frequency Samples Needed to Represent a Transfer Function Using Adaptive Sampling
Chapter 7: Using Prony's Method to Design Arrays that Produce the Patterns of Continuous Source Distributions and Prescribed Radiation Patterns
Chapter 8: Designing Discrete Arrays Using Prony's Method to Model Exponentiated Radiation Patterns
Chapter 9: Using Adaptive Estimation to Minimize the Number of Samples Needed to Develop a Radiation or Scattering Pattern to a Specified Uncertainty
Chapter 10: Modeling Dipole Arrays that Produce Synthesized Patterns Using NEC
Chapter 11: Using Model-Based Parameter Estimation to Assess the Accuracy of Numerical Models
Chapter 12: Using Prony's Method to Develop Pole-Based Models of Linear Sources
Chapter 13: Inversion of One-Dimensional Scattering Data Using Prony's Method
Chapter 14: Derivative Sampling of Computational Data
Appendix A: MBPE estimation in computational electromagnetics
Appendix B: Symbols and Notation
Appendix C: MBPE References

最近チェックした商品