AI-Based Forecasting of Solar Photovoltaics Power Generation (Energy Engineering)

個数:
  • 予約

AI-Based Forecasting of Solar Photovoltaics Power Generation (Energy Engineering)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 312 p.
  • 言語 ENG
  • 商品コード 9781837240197

Full Description

Photovoltaic energy generators large and small exhibit intermittency, making it hard to predict production to ensure grid power quality. Artificial intelligence (AI) and machine learning (ML) offer means to improve PV forecasting based on data from existing systems, weather forecast data, and other information. The ability to forecast PV generation is crucial for grid management, energy trading, and efficient energy utilization.

AI-Based Forecasting of Solar Photovoltaics Power Generation blends theoretical knowledge with practical case studies, and covers both traditional and advanced deep learning techniques, and the intricacies of AI algorithms. Chapters cover data collection and processing, solar forecasting based on statistical time-series, machine and deep learning, hybrid and probabilistic approaches, model optimisation and hyperparameter performance evaluation, use of sky imager, and forecasting for energy system integration.

This book is for researchers and advanced students involved with PV systems in industry and academia, as well as for data scientists involved with energy systems. It also serves advanced students in EE and photovoltaics and policymakers. It provides readers with a comprehensive understanding of how AI can be leveraged to forecast solar PV energy outputs more accurately.

Contents

Chapter 1: Introduction to solar photovoltaics generation forecast
Chapter 2: Data, data collection, and pre-processing for solar photovoltaics forecast
Chapter 3: Statistical time-series based solar photovoltaics forecast
Chapter 4: Machine learning based solar photovoltaics forecast
Chapter 5: Deep learning based solar photovoltaics forecast
Chapter 6: Ensemble and hybrid approaches for solar photovoltaics forecast
Chapter 7: Probabilistic approaches for solar photovoltaics forecast
Chapter 8: Model optimisation, hyperparameter tuning, and performance evaluation of AI-based solar photovoltaics forecast
Chapter 9: Sky imager based solar photovoltaics forecast
Chapter 10: Solar photovoltaics forecasting for energy system integration and control

最近チェックした商品