AI-Driven Knowledge Management Assets, Volume 2 : Strategies for the Modern Business Landscape

個数:
  • 予約

AI-Driven Knowledge Management Assets, Volume 2 : Strategies for the Modern Business Landscape

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 360 p.
  • 言語 ENG
  • 商品コード 9781836627791
  • DDC分類 330.1

Full Description

With Artificial Intelligence (AI) reshaping how businesses operate, the integration of intelligent technologies into Knowledge Management (KM) processes offers new opportunities for optimizing data-driven decision-making and enhancing organizational performance.

AI-Driven Knowledge Management Assets, Volumes 1 and 2 explore KM as a critical element of business strategy and managerial practice, especially in an era of rapid AI adoption. Authors examine KM's foundational and advanced aspects through a managerial lens, highlighting how AI is reshaping contemporary KM practices, and delve into traditional KM strategies and cutting-edge AI applications. Each chapter is enriched with case studies and empirical research that showcase the real-world benefits and challenges of integrating AI into KM. From uncovering the theoretical underpinnings of KM to examining AI-driven innovations that create competitive advantages, this work offers actionable insights and perspectives on future developments. Authors address ethical, sustainability and managerial issues, equipping readers with the tools to navigate the complexities of AI-infused KM practices.

Providing a valuable resource for business leaders, academics, and students, these volumes support those looking to integrate AI into KM to drive strategic decision-making and operational efficiency. Merging traditional knowledge management practices with the latest AI advancements, they prepare readers to harness technology for innovative solutions, positioning their organizations for success in the modern business landscape.

Contents

Part 1. Introduction

Chapter 1. Unveiling the AI-Driven Knowledge Asset Landscape: Foundations, Innovations, and Integration Strategies; Miltiadis Lytras and Meir Russ

Part 2. AI-Driven Decision Support Systems in Business

Chapter 2. How Artificial Intelligence Affects the Decision-Making Process in Business: AI-Driven Decision Support Systems; Cem Ufuk Baytar

Chapter 3. AI-Driven Decision Support Systems for Transforming Employee Engagement and Training in Business; Jill Courtney

Part 3. Case Studies on AI-Driven Knowledge Management Systems

Chapter 4. Implementing Artificial Intelligence for Knowledge Management in Small and Medium Enterprises; Kabiru Ishola Genty, Godwin Kaisara, Sulaiman Olusegun Atiku, and Hylton James Villet

Chapter 5. Technology Using Artificial Intelligence (AI) to Enhance Productivity and Sustainability in Atlantic Salmon Production and Challenges from Knowledge Management; Per Harald Rødvei, Knut Ingar Westeren, and Martin Munkeby

Chapter 6. Transforming Knowledge Management through Synergistic AI-Human Collaboration; Viraj Dawarka and Geshwaree Huzooree

Chapter 7. Architectural AI Design Patterns for Knowledge Management Processes; Giovanna Di Marzo Serugendo and Lamia Friha

Chapter 8. Cooperation Between Artificial Intelligence and Lateral Transshipment: Qualitative study; Elleuch Fadoi

Part 4. The Role of AI and KM in Enhancing Employee Relationship and Talent Management

Chapter 9. How AI influences Employees' Organisational Behaviour in Workplaces; Mandy Mok Kim Man, Wong Wan Ting, Lebene Soga, and Maria Fernandez-Muiños

Chapter 10. AI in Action: Decoding the Employee Experience Connection to Boost Engagement; Puneet Kumar and Nayantara Padhi

Chapter 11. Reimagining Talent Management through the AI-Knowledge Nexus; Unnar Theodorsson

Part 5. The Future of AI in Knowledge Management: Challenges and Opportunities

Chapter 12. The Prospective Developments of Artificial Intelligence in the Domain of Knowledge Management: Challenges and Opportunities; Viraj Dawarka, Alisha Hingun Goolam Gukan, and Aisha Bibi Idoo

Chapter 13. AI-Driven Knowledge Management for Development in the Global South: Bridging Digital Divides through Localized Innovation; Nanette Y. Saes, Bruce W. Watson, and Liam R. Watson

Chapter 14. Artificial Intelligence and Knowledge Management Systems: Transforming the Future of Business Operations in the Fourth Industrial Revolution; Rashmi Kumari, Sujata Priyambada Dash, and Rajeshwari Chatterjee

Part 6. Conclusions

Chapter 15. Safeguarding the Future: Addressing Fraud, Misuse, and Ethical Vulnerabilities in AI-Driven Knowledge Management; Meir Russ and Miltiadis Lytras

最近チェックした商品