Generative AI Application Integration Patterns : Integrate large language models into your applications

個数:

Generative AI Application Integration Patterns : Integrate large language models into your applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 218 p.
  • 言語 ENG
  • 商品コード 9781835887608
  • DDC分類 006.3

Full Description

Unleash the transformative potential of GenAI with this comprehensive guide that serves as an indispensable roadmap for integrating large language models into real-world applications. Gain invaluable insights into identifying compelling use cases, leveraging state-of-the-art models effectively, deploying these models into your applications at scale, and navigating ethical considerations.

Key Features

Get familiar with the most important tools and concepts used in real scenarios to design GenAI apps
Interact with GenAI models to tailor model behavior to minimize hallucinations
Get acquainted with a variety of strategies and an easy to follow 4 step frameworks for integrating GenAI into applications

Book DescriptionExplore the transformative potential of GenAI in the application development lifecycle. Through concrete examples, you will go through the process of ideation and integration, understanding the tradeoffs and the decision points when integrating GenAI.
With recent advances in models like Google Gemini, Anthropic Claude, DALL-E and GPT-4o, this timely resource will help you harness these technologies through proven design patterns.
We then delve into the practical applications of GenAI, identifying common use cases and applying design patterns to address real-world challenges. From summarization and metadata extraction to intent classification and question answering, each chapter offers practical examples and blueprints for leveraging GenAI across diverse domains and tasks. You will learn how to fine-tune models for specific applications, progressing from basic prompting to sophisticated strategies such as retrieval augmented generation (RAG) and chain of thought.
Additionally, we provide end-to-end guidance on operationalizing models, including data prep, training, deployment, and monitoring. We also focus on responsible and ethical development techniques for transparency, auditing, and governance as crucial design patterns.What you will learn

Concepts of GenAI: pre-training, fine-tuning, prompt engineering, and RAG
Framework for integrating AI: entry points, prompt pre-processing, inference, post-processing, and presentation
Patterns for batch and real-time integration
Code samples for metadata extraction, summarization, intent classification, question-answering with RAG, and more
Ethical use: bias mitigation, data privacy, and monitoring
Deployment and hosting options for GenAI models

Who this book is forThis book is not an introduction to AI/ML or Python. It offers practical guides for designing, building, and deploying GenAI applications in production. While all readers are welcome, those who benefit most include:
Developer engineers with foundational tech knowledge
Software architects seeking best practices and design patterns
Professionals using ML for data science, research, etc., who want a deeper understanding of Generative AI
Technical product managers with a software development background
This concise focus ensures practical, actionable insights for experienced professionals

Contents

Table of Contents

Introduction to Generative AI Design Patterns
Identifying Generative AI Use Cases
Designing Patterns for Interacting with Generative AI
Generative AI Batch & Real-time Integration Patterns
Integration Pattern: Batch Metadata Extraction
Integration Pattern: Batch Summarization
Integration Pattern: Real-Time Intent Classification
Integration Pattern: Real-Time Retrieval Augmented Generation
Operationalizing Generative AI Integration Patterns
Embedding Responsible AI into your GenAI Applications

最近チェックした商品